Benjamin D Hatton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6310501/publications.pdf Version: 2024-02-01

RENIAMIN D HATTON

#	Article	IF	CITATIONS
1	Shape-programmable fluid bubbles for responsive building skins. Journal of Building Engineering, 2022, 48, 103942.	1.6	4
2	Stepwise slime mould growth as a template for urban design. Scientific Reports, 2022, 12, 1322.	1.6	3
3	Programmable droplets: Leveraging digitally-responsive flow fields to actively tune liquid morphologies. PLoS ONE, 2022, 17, e0264141.	1.1	2
4	Silica deposition on zirconia via room-temperature atomic layer deposition (RT-ALD): Effect on bond strength to veneering ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 129, 105142.	1.5	3
5	Long-Term Reduction of Bacterial Adhesion on Polyurethane by an Ultra-Thin Surface Modifier. Biomedicines, 2022, 10, 979.	1.4	2
6	Silica deposition on zirconia via Room-Temperature Atomic Layer Deposition and bond strength to resin-based luting agent. Ceramics International, 2022, , .	2.3	0
7	Correction to "Oil-Infused Silicone Prevents Zebra Mussel Adhesionâ€: ACS Applied Bio Materials, 2022, 5, 3573-3573.	2.3	0
8	Decapod-inspired pigment modulation for active building facades. Nature Communications, 2022, 13, .	5.8	8
9	Lubrication dynamics of swollen silicones to limit long term fouling and microbial biofilms. Soft Matter, 2021, 17, 936-946.	1.2	15
10	Reduction of microbial adhesion on polyurethane by a sub-nanometer covalently-attached surface modifier. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111579.	2.5	13
11	Transparent Organogel Films Showing Extremely Efficient and Durable Anti-Icing Performance. ACS Applied Materials & Interfaces, 2021, 13, 28925-28937.	4.0	47
12	Mechanical performance of a hybrid zirconia developed through hydrothermal treatment and Room-Temperature Atomic Layer Deposition (RT-ALD). Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104783.	1.5	3
13	Degradation Characteristics of Electrospun Gas Diffusion Layers with Custom Pore Structures for Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 2414-2427.	4.0	8
14	Preventing <i>Pseudomonas aeruginosa</i> Biofilms on Indwelling Catheters by Surface-Bound Enzymes. ACS Applied Bio Materials, 2021, 4, 8248-8258.	2.3	16
15	Divisions in a Fibrillar Adhesive Increase the Adhesive Strength. ACS Applied Materials & Interfaces, 2021, 13, 59478-59486.	4.0	2
16	Antimicrobial antidegradative dental adhesive preserves restoration-tooth bond. Dental Materials, 2020, 36, 1666-1679.	1.6	8
17	Designing Tailored Gas Diffusion Layers with Pore Size Gradients via Electrospinning for Polymer Electrolyte Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 2695-2707.	2.5	31
18	Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nature Communications, 2019, 10, 2608.	5.8	104

BENJAMIN D HATTON

#	Article	IF	CITATIONS
19	Oil-Infused Silicone Prevents Zebra Mussel Adhesion. ACS Applied Bio Materials, 2019, 2, 5841-5847.	2.3	20
20	Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Scientific Reports, 2018, 8, 895.	1.6	56
21	Non-eluting, surface-bound enzymes disrupt surface attachment of bacteria by continuous biofilm polysaccharide degradation. Biomaterials, 2018, 167, 168-176.	5.7	41
22	Responsive antimicrobial dental adhesive based on drug-silica co-assembled particles. Acta Biomaterialia, 2018, 76, 283-294.	4.1	33
23	Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature, 2018, 559, 77-82.	13.7	229
24	Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms. ACS Applied Materials & Interfaces, 2018, 10, 22902-22912.	4.0	67
25	The effect of ribose pre-treatment of cortical bone on \hat{I}^3 -irradiation sterilization effectiveness. Cell and Tissue Banking, 2017, 18, 555-560.	0.5	2
26	Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomaterials Science and Engineering, 2015, 1, 43-51.	2.6	235
27	Non-wettable, Oxidation-Stable, Brightly Luminescent, Perfluorodecyl-Capped Silicon Nanocrystal Film. Journal of the American Chemical Society, 2014, 136, 15849-15852.	6.6	32
28	A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature Biotechnology, 2014, 32, 1134-1140.	9.4	575
29	Preparation and hydrophobicity of biomorphic ZnO/carbon based on a lotus-leaf template. Materials Science and Engineering C, 2014, 43, 310-316.	3.8	26
30	Three-Phase Co-assembly: In Situ Incorporation of Nanoparticles into Tunable, Highly Ordered, Porous Silica Films. ACS Photonics, 2014, 1, 53-60.	3.2	44
31	Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications, 2013, 4, 2167.	5.8	339
32	Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches. Advanced Functional Materials, 2013, 23, 4577-4584.	7.8	109
33	Fine-Tuning the Degree of Stem Cell Polarization and Alignment on Ordered Arrays of High-Aspect-Ratio Nanopillars. ACS Nano, 2012, 6, 6222-6230.	7.3	164
34	Writing on Superhydrophobic Nanopost Arrays: Topographic Design for Bottom-up Assembly. Nano Letters, 2012, 12, 4551-4557.	4.5	56
35	Secrets revealed — Spatially selective wetting of plasma-patterned periodic mesoporous organosilica. Canadian Journal of Chemistry, 2012, 90, 1063-1068.	0.6	0
36	Patterning Hierarchy in Direct and Inverse Opal Crystals. Small, 2012, 8, 1904-1911.	5.2	55

Benjamin D Hatton

#	Article	IF	CITATIONS
37	Opal Crystals: Patterning Hierarchy in Direct and Inverse Opal Crystals (Small 12/2012). Small, 2012, 8, 1798-1798.	5.2	1
38	Encoding Complex Wettability Patterns in Chemically Functionalized 3D Photonic Crystals. Journal of the American Chemical Society, 2011, 133, 12430-12432.	6.6	237
39	Predictive Model for Ice Formation on Superhydrophobic Surfaces. Langmuir, 2011, 27, 14143-14150.	1.6	175
40	Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477, 443-447.	13.7	3,165
41	Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets. ACS Nano, 2010, 4, 7699-7707.	7.3	1,000
42	Low-temperature synthesis of nanoscale silica multilayers – atomic layer deposition in a test tube. Journal of Materials Chemistry, 2010, 20, 6009.	6.7	32
43	Assembly of large-area, highly ordered, crack-free inverse opal films. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10354-10359.	3.3	475
44	Past, Present, and Future of Periodic Mesoporous OrganosilicasThe PMOs. Accounts of Chemical Research, 2005, 38, 305-312.	7.6	422
45	Towards the synthetic all-optical computer: science fiction or reality?. Journal of Materials Chemistry, 2004, 14, 781-794.	6.7	120
46	Periodic Mesoporous Organosilicas Containing Interconnected [Si(CH2)]3 Rings. Science, 2003, 302, 266-269.	6.0	226
47	Electrical Conductivity of a 3Y-TZP/Alumina Laminate Composite Synthesized by Electrophoretic Deposition Journal of the Ceramic Society of Japan, 2002, 110, 959-962.	1.3	6
48	Design and Fracture of Layered Al ₂ O ₃ /TZ3Y Composites Produced by Electrophoretic Deposition. Journal of the American Ceramic Society, 2001, 84, 571-576.	1.9	39
49	Influence of Washing on Zirconia Powder for Electrophoretic Deposition. Journal of the American Ceramic Society, 2001, 84, 666-668.	1.9	20
50	Dense, bubble-free ceramic deposits from aqueous suspensions by electrophoretic deposition. Journal of Materials Research, 2001, 16, 321-324.	1.2	91
51	Slip Casting and Electrophoretic Deposition of Suspensions of Alumina and Zirconia Fine Particles Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47, 1015-1020.	0.1	1
52	A Comparison of Fine-Grained Alumina-Zirconia Prepared by Slip Casting and Electrophoretic Deposition Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 1284-1291.	0.1	1