David Teis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6310454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein quality control at the Golgi. Current Opinion in Cell Biology, 2022, 75, 102074.	5.4	14
2	The αâ€arrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis. Biology of the Cell, 2021, 113, 183-219.	2.0	38
3	SATB2â€LEMD2 interaction links nuclear shape plasticity to regulation of cognitionâ€related genes. EMBO Journal, 2021, 40, e103701.	7.8	14
4	TOR complex 2 (TORC2) signaling and the ESCRT machinery cooperate in the protection of plasma membrane integrity in yeast. Journal of Biological Chemistry, 2020, 295, 12028-12044.	3.4	11
5	Plasma membrane tension regulates eisosome structure and function. Molecular Biology of the Cell, 2020, 31, 287-303.	2.1	38
6	ESCRT-III/Vps4 Controls Heterochromatin-Nuclear Envelope Attachments. Developmental Cell, 2020, 53, 27-41.e6.	7.0	57
7	TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy. Journal of Cell Biology, 2020, 219, .	5.2	47
8	Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids. ELife, 2020, 9, .	6.0	23
9	The Siderophore Transporter Sit1 Determines Susceptibility to the Antifungal VL-2397. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	34
10	Biogenesis of lysosomeâ€related organelles complexâ€1 (BORC) regulates late endosomal/lysosomal size through PIKfyveâ€dependent phosphatidylinositolâ€3,5â€bisphosphate. Traffic, 2019, 20, 674-696.	2.7	30
11	Endosome and Golgiâ€associated degradation (<scp>EGAD</scp>) of membrane proteins regulates sphingolipid metabolism. EMBO Journal, 2019, 38, e101433.	7.8	73
12	The yeast arrestin-related protein Bul1 is a novel actor of glucose-induced endocytosis. Molecular Biology of the Cell, 2018, 29, 1012-1020.	2.1	23
13	Functional patchworking at the plasma membrane. EMBO Journal, 2018, 37, .	7.8	4
14	ESCRT and Membrane Protein Ubiquitination. Progress in Molecular and Subcellular Biology, 2018, 57, 107-135.	1.6	30
15	Regulation of Rab5 isoforms by transcriptional and postâ€transcriptional mechanisms in yeast. FEBS Letters, 2017, 591, 2803-2815.	2.8	10
16	Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. ELife, 2017, 6, .	6.0	138
17	ESCRTâ€₦I and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS Journal, 2016, 283, 3288-3302.	4.7	90
18	Lysosomal signaling in control of degradation pathways. Current Opinion in Cell Biology, 2016, 39, 8-14.	5.4	110

DAVID TEIS

#	Article	IF	CITATIONS
19	ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. ELife, 2016, 5, .	6.0	54
20	Quantitative Proteomics Using Ultralow Flow Capillary Electrophoresis–Mass Spectrometry. Analytical Chemistry, 2015, 87, 4633-4640.	6.5	50
21	Ultrastructural Morphometry Points to a New Role for <scp>LAMTOR2</scp> in Regulating the Endo/Lysosomal System. Traffic, 2015, 16, 617-634.	2.7	32
22	The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. ELife, 2015, 4, e07736.	6.0	102
23	The role of the endosomal sorting complexes required for transport (ESCRT) in tumorigenesis. Molecular Membrane Biology, 2014, 31, 111-119.	2.0	46
24	Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. Journal of Cell Biology, 2014, 205, 33-49.	5.2	157
25	The late endosomal p14–MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. Journal of Cell Biology, 2014, 205, 525-540.	5.2	82
26	Membrane Abscission: First Glimpse at Dynamic ESCRTs. Current Biology, 2012, 22, R603-R605.	3.9	7
27	The ESCRT machinery. Current Biology, 2012, 22, R116-R120.	3.9	335
28	Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Letters, 2011, 585, 3191-3196.	2.8	75
29	Endosomal signaling and cell migration. Current Opinion in Cell Biology, 2011, 23, 615-620.	5.4	20
30	Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Molecular Biology of the Cell, 2011, 22, 4093-4107.	2.1	41
31	QIKS – Quantitative identification of kinase substrates. Proteomics, 2010, 10, 2015-2025.	2.2	26
32	ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO Journal, 2010, 29, 871-883.	7.8	145
33	Functional Reconstitution of ESCRT-III Assembly and Disassembly. Cell, 2009, 136, 97-109.	28.9	275
34	SnapShot: The ESCRT Machinery. Cell, 2009, 137, 182-182.e1.	28.9	51
35	Ordered Assembly of the ESCRT-III Complex on Endosomes Is Required to Sequester Cargo during MVB Formation. Developmental Cell, 2008, 15, 578-589.	7.0	299
36	Assembly of a Fab1 Phosphoinositide Kinase Signaling Complex Requires the Fig4 Phosphoinositide Phosphoinositide Phosphatase. Molecular Biology of the Cell, 2008, 19, 4273-4286.	2.1	120

DAVID TEIS

#	Article	IF	CITATIONS
37	A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nature Medicine, 2007, 13, 38-45.	30.7	200
38	Microscopy of theDrosophila facet eye: Vademecum for standardized fixation, embedding, and sectioning. Microscopy Research and Technique, 2006, 69, 93-98.	2.2	6
39	p14–MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. Journal of Cell Biology, 2006, 175, 861-868.	5.2	195
40	Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3. Aging Cell, 2005, 4, 325-330.	6.7	56
41	Phosphoproteomic analysis using immobilized metal ion affinity chromatography on the basis of cellulose powder. Proteomics, 2005, 5, 46-54.	2.2	46
42	Crystal structure of the p14/MP1 scaffolding complex: How a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10984-10989.	7.1	89
43	Structural and Enzymatic Properties of the AAA Protein Drg1p fromSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 26788-26795.	3.4	28
44	Comm Sorts Robo to Control Axon Guidance at the Drosophila Midline. Cell, 2002, 110, 415-427.	28.9	289
45	Localization of the MP1-MAPK Scaffold Complex to Endosomes Is Mediated by p14 and Required for Signal Transduction. Developmental Cell, 2002, 3, 803-814.	7.0	341
46	A Novel 14-Kilodalton Protein Interacts with the Mitogen-Activated Protein Kinase Scaffold Mp1 on a Late Endosomal/Lysosomal Compartment. Journal of Cell Biology, 2001, 152, 765-776.	5.2	189