
Hakan Westerblad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6310105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. Journal of Physiology, 1998, 509, 565-575.	2.9	347
2	Respiratory and Limb Muscle Weakness Induced by Tumor Necrosis Factor-α. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 479-484.	5.6	284
3	Increased mitochondrial mass in mitochondrial myopathy mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15066-15071.	7.1	262
4	Dietary nitrate increases tetanic [Ca ²⁺] _i and contractile force in mouse fastâ€ŧwitch muscle. Journal of Physiology, 2012, 590, 3575-3583.	2.9	248
5	Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research, 2010, 316, 3093-3099.	2.6	236
6	Muscle glycogen stores and fatigue. Journal of Physiology, 2013, 591, 4405-4413.	2.9	230
7	Muscle Fatigue: Lactic Acid or Inorganic Phosphate the Major Cause?. Physiology, 2002, 17, 17-21.	3.1	229
8	Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. Journal of Physiology, 2006, 575, 251-262.	2.9	184
9	Impaired calcium release during fatigue. Journal of Applied Physiology, 2008, 104, 296-305.	2.5	175
10	Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nature Neuroscience, 2001, 4, 597-604.	14.8	174
11	Contractile response to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redoxâ€modulation of skeletal muscle function. FASEB Journal, 2001, 15, 309-311.	0.5	155
12	Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance. Biochemical and Biophysical Research Communications, 2006, 350, 202-207.	2.1	134
13	Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. European Journal of Applied Physiology, 2010, 110, 1-15.	2.5	133
14	Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. Journal of Physiology, 2011, 589, 2119-2127.	2.9	132
15	Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca ²⁺ leak after one session of high-intensity interval exercise. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15492-15497.	7.1	132
16	Functional significance of Ca 2+ in long-lasting fatigue of skeletal muscle. European Journal of Applied Physiology, 2000, 83, 166-174.	2.5	124
17	Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. American Journal of Physiology - Cell Physiology, 2016, 310, C836-C840.	4.6	119
18	Mitochondrial production of reactive oxygen species contributes to the βâ€adrenergic stimulation of mouse cardiomycytes. Journal of Physiology, 2011, 589, 1791-1801.	2.9	117

#	Article	IF	CITATIONS
19	Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor α1. EMBO Journal, 2007, 26, 4535-4545.	7.8	116
20	Reactive oxygen species and fatigueâ€induced prolonged lowâ€frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. Journal of Physiology, 2008, 586, 175-184.	2.9	116
21	Effect of nitric oxide on single skeletal muscle fibres from the mouse. Journal of Physiology, 1998, 509, 577-586.	2.9	115
22	Locomotor Deficiencies and Aberrant Development of Subtype-Specific GABAergic Interneurons Caused by an Unliganded Thyroid Hormone Receptor α1. Journal of Neuroscience, 2008, 28, 1904-1915.	3.6	112
23	Effects of concentric and eccentric contractions on phosphorylation of MAPK erk1/2 and MAPK p38 in isolated rat skeletal muscle. Journal of Physiology, 2001, 535, 155-164.	2.9	108
24	Emerging Roles of ROS/RNS in Muscle Function and Fatigue. Antioxidants and Redox Signaling, 2011, 15, 2487-2499.	5.4	102
25	Effects of Palmitate on Ca2+ Handling in Adult Control and ob/ob Cardiomyocytes: Impact of Mitochondrial Reactive Oxygen Species. Diabetes, 2007, 56, 1136-1142.	0.6	101
26	Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. Journal of Physiology, 2016, 594, 5149-5160.	2.9	98
27	Neuromuscular Junction Disassembly and Muscle Fatigue in Mice Lacking Neurotrophin-4. Molecular and Cellular Neurosciences, 2001, 18, 56-67.	2.2	92
28	Difference in skeletal muscle function in males vs. females: role of estrogen receptor-β. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E1125-E1131.	3.5	92
29	Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase. FASEB Journal, 2000, 14, 982-990.	0.5	91
30	Recent advances in the understanding of skeletal muscle fatigue. Current Opinion in Rheumatology, 2002, 14, 648-652.	4.3	86
31	Molecular Basis for Exercise-Induced Fatigue: The Importance of Strictly Controlled Cellular Ca ²⁺ Handling. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029710.	6.2	85
32	Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle. Journal of Applied Physiology, 2009, 107, 1935-1942.	2.5	84
33	TLR4 as receptor for HMGB1 induced muscle dysfunction in myositis. Annals of the Rheumatic Diseases, 2013, 72, 1390-1399.	0.9	81
34	Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Research and Therapy, 2013, 15, R83.	3.5	80
35	The Role of Ca2+ Influx for Insulin-Mediated Glucose Uptake in Skeletal Muscle. Diabetes, 2006, 55, 2077-2083.	0.6	79
36	A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochemical Pharmacology, 2007, 74, 1628-1635.	4.4	79

#	Article	IF	CITATIONS
37	Slowed Relaxation in Fatigued Skeletal Muscle Fibers of Xenopus and Mouse. Journal of General Physiology, 1997, 109, 385-399.	1.9	74
38	Cellular Mechanisms of Skeletal Muscle Fatigue. Advances in Experimental Medicine and Biology, 2003, 538, 563-571.	1.6	74
39	Effects of HMGB1 on <i>in vitro</i> responses of isolated muscle fibers and functional aspects in skeletal muscles of idiopathic inflammatory myopathies. FASEB Journal, 2010, 24, 570-578.	0.5	74
40	Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinaseâ€deficient mice. Journal of Physiology, 2001, 533, 379-388.	2.9	72
41	Insulin and Inositol 1,4,5-Trisphosphate Trigger Abnormal Cytosolic Ca2+ Transients and Reveal Mitochondrial Ca2+ Handling Defects in Cardiomyocytes of ob/ob Mice. Diabetes, 2005, 54, 2375-2381.	0.6	71
42	Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. Journal of Physiology, 2006, 572, 551-559.	2.9	71
43	Increased fatigue resistance linked to Ca ²⁺ -stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice. Journal of Physiology, 2010, 588, 4275-4288.	2.9	71
44	Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Journal of Physiology, 2003, 551, 179-190.	2.9	71
45	The role of <i>in vivo</i> Ca ²⁺ signals acting on Ca ²⁺ –calmodulinâ€dependent proteins for skeletal muscle plasticity. Journal of Physiology, 2011, 589, 5021-5031.	2.9	69
46	Effects of CO ₂ -induced acidification on the fatigue resistance of single mouse muscle fibers at 28°C. Journal of Applied Physiology, 1998, 85, 478-483.	2.5	68
47	Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue. Medicine and Science in Sports and Exercise, 2016, 48, 2339-2342.	0.4	68
48	TNF-Â-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovascular Research, 2014, 103, 90-99.	3.8	67
49	Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres. Journal of Physiology, 2015, 593, 457-472.	2.9	66
50	Increased mitochondrial Ca 2+ and decreased sarcoplasmic reticulum Ca 2+ in mitochondrial myopathy. Human Molecular Genetics, 2009, 18, 278-288.	2.9	64
51	Effects of glucose on contractile function, [Ca ²⁺] _i , and glycogen in isolated mouse skeletal muscle. American Journal of Physiology - Cell Physiology, 2002, 282, C1306-C1312.	4.6	62
52	MECHANISMS OF FATIGUE INDUCED BY ISOMETRIC CONTRACTIONS IN EXERCISING HUMANS AND IN MOUSE ISOLATED SINGLE MUSCLE FIBRES. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 334-339.	1.9	62
53	Mechanisms underlying reduced maximum shortening velocity during fatigue of intact, single fibres of mouse muscle. Journal of Physiology, 1998, 510, 269-277.	2.9	60
54	Ryanodine receptors of pancreatic βâ€cells mediate a distinct contextâ€dependent signal for insulin secretion. FASEB Journal, 2003, 17, 301-303.	0.5	60

#	Article	IF	CITATIONS
55	Local Arginase Inhibition during Early Reperfusion Mediates Cardioprotection via Increased Nitric Oxide Production. PLoS ONE, 2012, 7, e42038.	2.5	60
56	Nonshivering thermogenesis protects against defective calcium handling in muscle. FASEB Journal, 2008, 22, 3919-3924.	0.5	59
57	Subcellular distribution of glycogen and decreased tetanic Ca ²⁺ in fatigued single intact mouse muscle fibres. Journal of Physiology, 2014, 592, 2003-2012.	2.9	58
58	Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulinâ€mediated glucose uptake in adult skeletal muscle cells. FASEB Journal, 2009, 23, 1728-1738.	0.5	57
59	Postâ€exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle. Journal of Physiology, 2017, 595, 7413-7426.	2.9	52
60	PHYSIOLOGY: Enhanced: Lactic Acid–The Latest Performance-Enhancing Drug. Science, 2004, 305, 1112-1113.	12.6	51
61	Pacing-induced calcineurin activation controls cardiac Ca2+signalling and gene expression. Journal of Physiology, 2004, 554, 309-320.	2.9	51
62	Ca2+ and insulin-mediated glucose uptake. Current Opinion in Pharmacology, 2008, 8, 339-345.	3.5	51
63	Cross bridges account for only 20% of total ATP consumption during submaximal isometric contraction in mouse fast-twitch skeletal muscle. American Journal of Physiology - Cell Physiology, 2006, 291, C147-C154.	4.6	48
64	Vacuole formation in fatigued skeletal muscle fibres from frog and mouse: effects of extracellular lactate. Journal of Physiology, 2000, 526, 597-611.	2.9	46
65	Insulin potentiates TRPC3-mediated cation currents in normal but not in insulin-resistant mouse cardiomyocytes. Cardiovascular Research, 2007, 73, 376-385.	3.8	46
66	Vacuole formation in fatigued single muscle fibres from frog and mouse. Journal of Muscle Research and Cell Motility, 1999, 20, 19-32.	2.0	45
67	Impaired myofibrillar function in the soleus muscle of mice with collagenâ€induced arthritis. Arthritis and Rheumatism, 2009, 60, 3280-3289.	6.7	45
68	Mice expressing L345P mutant desmin exhibit morphological and functional changes of skeletal and cardiac mitochondria. Journal of Muscle Research and Cell Motility, 2008, 29, 25-36.	2.0	44
69	Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. European Journal of Applied Physiology, 2016, 116, 2215-2224.	2.5	43
70	Nitrosative modifications of the Ca ²⁺ release complex and actin underlie arthritis-induced muscle weakness. Annals of the Rheumatic Diseases, 2015, 74, 1907-1914.	0.9	40
71	β-Hydroxybutyrate inhibits insulin-mediated glucose transport in mouse oxidative muscle. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E364-E373.	3.5	38
72	Inhibition of creatine kinase reduces the rate of fatigueâ€induced decrease in tetanic [Ca 2+] i in mouse skeletal muscle. Journal of Physiology, 2001, 533, 639-649.	2.9	37

#	Article	IF	CITATIONS
73	Activation of aconitase in mouse fast-twitch skeletal muscle during contraction-mediated oxidative stress. American Journal of Physiology - Cell Physiology, 2007, 293, C1154-C1159.	4.6	36
74	Effects of CGS 9343B (a Putative Calmodulin Antagonist) on Isolated Skeletal Muscle. Journal of Biological Chemistry, 1995, 270, 25613-25618.	3.4	35
75	Calmodulin kinase modulates Ca2+ release in mouse skeletal muscle. Journal of Physiology, 2003, 551, 5-12.	2.9	34
76	Effects of Congestive Heart Failure on Ca 2+ Handling in Skeletal Muscle During Fatigue. Circulation Research, 2006, 98, 1514-1519.	4.5	33
77	Mechanical isolation, and measurement of force and myoplasmic free [Ca2+] in fully intact single skeletal muscle fibers. Nature Protocols, 2017, 12, 1763-1776.	12.0	33
78	High temperature does not alter fatigability in intact mouse skeletal muscle fibres. Journal of Physiology, 2009, 587, 4717-4724.	2.9	32
79	SR Ca2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance. Journal of General Physiology, 2019, 151, 567-577.	1.9	32
80	Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. American Journal of Human Genetics, 2021, 108, 446-457.	6.2	32
81	A Mechanism for Statin-Induced Susceptibility to Myopathy. JACC Basic To Translational Science, 2019, 4, 509-523.	4.1	31
82	Mechanical work as predictor of force enhancement and force depression. Journal of Biomechanics, 2009, 42, 1628-1634.	2.1	30
83	Impaired mitochondrial respiration and decreased fatigue resistance followed by severe muscle weakness in skeletal muscle of mitochondrial DNA mutator mice. Journal of Physiology, 2012, 590, 6187-6197.	2.9	30
84	Prolonged force depression after mechanically demanding contractions is largely independent of Ca ²⁺ and reactive oxygen species. FASEB Journal, 2017, 31, 4809-4820.	0.5	29
85	Impaired sarcoplasmic reticulum Ca2+release is the major cause of fatigueâ€induced force loss in intact single fibres from human intercostal muscle. Journal of Physiology, 2020, 598, 773-787.	2.9	29
86	Muscle dysfunction associated with adjuvant-induced arthritis is prevented by antioxidant treatment. Skeletal Muscle, 2015, 5, 20.	4.2	27
87	Interpolated twitches in fatiguing single mouse muscle fibres: implications for the assessment of central fatigue. Journal of Physiology, 2008, 586, 2799-2805.	2.9	26
88	Intracellular ATP measured with luciferin/luciferase in isolated single mouse skeletal muscle fibres. Pflugers Archiv European Journal of Physiology, 2002, 443, 836-842.	2.8	25
89	Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice. Journal of Physiology, 2003, 552, 393-402.	2.9	25
90	Impaired Ca handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor ?. Journal of Molecular and Cellular Cardiology, 2005, 38, 655-663.	1.9	25

#	Article	IF	CITATIONS
91	Mechanical load plays little role in contraction-mediated glucose transport in mouse skeletal muscle. Journal of Physiology, 2007, 579, 527-534.	2.9	25
92	Isometric force and endurance in soleus muscle of thyroid hormone receptor-α1- or -β-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R598-R603.	1.8	24
93	Regulation of myoplasmic Ca 2+ in genetically obese (ob/ob) mouse single skeletal muscle fibres. Pflugers Archiv European Journal of Physiology, 2002, 444, 692-699.	2.8	24
94	Creatine Kinase Injection Restores Contractile Function in Creatineâ€Kinaseâ€Deficient Mouse Skeletal Muscle Fibres. Journal of Physiology, 2003, 547, 395-403.	2.9	24
95	Muscular force production after concentric contraction. Journal of Biomechanics, 2008, 41, 2422-2429.	2.1	24
96	Antioxidants and Skeletal Muscle Performance: "Common Knowledge―vs. Experimental Evidence. Frontiers in Physiology, 2012, 3, 46.	2.8	24
97	Impaired Ca2+ release contributes to muscle weakness in a rat model of critical illness myopathy. Critical Care, 2016, 20, 254.	5.8	24
98	Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE, 2017, 12, e0169146.	2.5	24
99	Methods to Detect Ca2+ in Living Cells. Advances in Experimental Medicine and Biology, 2012, 740, 27-43.	1.6	23
100	Doublet discharge stimulation increases sarcoplasmic reticulum Ca ²⁺ release and improves performance during fatiguing contractions in mouse muscle fibres. Journal of Physiology, 2013, 591, 3739-3748.	2.9	23
101	Dietary nitrate markedly improves voluntary running in mice. Physiology and Behavior, 2017, 168, 55-61.	2.1	23
102	Fast skeletal muscle troponin activator CKâ€2066260 increases fatigue resistance by reducing the energetic cost of muscle contraction. Journal of Physiology, 2019, 597, 4615-4625.	2.9	23
103	Toxic doses of caffeine are needed to increase skeletal muscle contractility. American Journal of Physiology - Cell Physiology, 2019, 316, C246-C251.	4.6	23
104	Abnormal Ca2+ release and catecholamine-induced arrhythmias in mitochondrial cardiomyopathy. Human Molecular Genetics, 2005, 14, 1069-1076.	2.9	22
105	Intracellular Ca2+-handling differs markedly between intact human muscle fibers and myotubes. Skeletal Muscle, 2015, 5, 26.	4.2	22
106	Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling. Basic Research in Cardiology, 2016, 111, 34.	5.9	22
107	Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes. Journal of Cellular Physiology, 2010, 223, 376-383.	4.1	21
108	The decrease in electrically evoked force production is delayed by a previous bout of stretch–shortening cycle exercise. Acta Physiologica, 2010, 198, 91-98.	3.8	21

#	Article	IF	CITATIONS
109	STIM1 R304W causes muscle degeneration and impaired platelet activation in mice. Cell Calcium, 2018, 76, 87-100.	2.4	21
110	Vitamin C and E Treatment Blunts Sprint Interval Training–Induced Changes in Inflammatory Mediator-, Calcium-, and Mitochondria-Related Signaling in Recreationally Active Elderly Humans. Antioxidants, 2020, 9, 879.	5.1	21
111	Upregulation of MHC class I in transgenic mice results in reduced forceâ€generating capacity in slowâ€twitch muscle. Muscle and Nerve, 2009, 39, 674-682.	2.2	20
112	The Ca ²⁺ sensitizer CKâ€2066260 increases myofibrillar Ca ²⁺ sensitivity and submaximal force selectively in fast skeletal muscle. Journal of Physiology, 2017, 595, 1657-1670.	2.9	20
113	CBA/J mice infected withTrypanosoma cruzi: An experimental model for inflammatory myopathies. Muscle and Nerve, 2003, 27, 442-448.	2.2	19
114	Linking genes with exercise: where is the cut-off?. European Journal of Applied Physiology, 2010, 110, 1095-1098.	2.5	19
115	Effects of N-acetylcysteine on isolated mouse skeletal muscle: contractile properties, temperature dependence, and metabolism. Pflugers Archiv European Journal of Physiology, 2014, 466, 577-585.	2.8	19
116	Residual force depression following muscle shortening is exaggerated by prior eccentric drop jump exercise. Journal of Applied Physiology, 2013, 115, 1191-1195.	2.5	18
117	Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles. Frontiers in Physiology, 2016, 7, 252.	2.8	18
118	Preconditioning contractions prevent the delayed onset of myofibrillar dysfunction after damaging eccentric contractions. Journal of Physiology, 2018, 596, 4427-4442.	2.9	17
119	Quantification of Plasma Kynurenine Metabolites Following One Bout of Sprint Interval Exercise. International Journal of Tryptophan Research, 2020, 13, 117864692097824.	2.3	17
120	Contractionâ€mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Journal of Physiology, 2003, 553, 523-531.	2.9	16
121	What limits exercise during high-intensity aerobic exercise?. European Journal of Applied Physiology, 2010, 110, 661-662.	2.5	16
122	Regulation of glycogen breakdown and its consequences for skeletal muscle function after training. Mammalian Genome, 2014, 25, 464-472.	2.2	16
123	Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy. Human Molecular Genetics, 2015, 24, 6580-6587.	2.9	16
124	The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome. PLoS ONE, 2016, 11, e0167090.	2.5	16
125	DYNAMIC VACUOLATION IN SKELETAL MUSCLE FIBRES AFTER FATIGUE. Cell Biology International, 2002, 26, 911-920.	3.0	15
126	Activation of Ca2+-dependent protein kinase II during repeated contractions in single muscle fibres from mouse is dependent on the frequency of sarcoplasmic reticulum Ca2+release. Acta Physiologica, 2007, 191, 131-137.	3.8	15

#	Article	IF	CITATIONS
127	Activation of glucose transport and AMPâ€activated protein kinase during muscle contraction in adenylate kinaseâ€1 knockout mice. Acta Physiologica, 2008, 192, 413-420.	3.8	15
128	Mechanisms of Skeletal Muscle Weakness. Advances in Experimental Medicine and Biology, 2010, 682, 279-296.	1.6	15
129	Insulin-independent glycogen supercompensation in isolated mouse skeletal muscle: role of phosphorylase inactivation. Pflugers Archiv European Journal of Physiology, 2004, 448, 533-8.	2.8	14
130	Moderately elevated extracellular [K ⁺] potentiates submaximal force and power in skeletal muscle via increased [Ca ²⁺] _i during contractions. American Journal of Physiology - Cell Physiology, 2019, 317, C900-C909.	4.6	14
131	Three weeks of sprint interval training improved high-intensity cycling performance and limited ryanodine receptor modifications in recreationally active human subjects. European Journal of Applied Physiology, 2019, 119, 1951-1958.	2.5	14
132	History effect and timing of force production introduced in a skeletal muscle model. Biomechanics and Modeling in Mechanobiology, 2012, 11, 947-957.	2.8	13
133	Kynurenine aminotransferase isoforms display fiber-type specific expression in young and old human skeletal muscle. Experimental Gerontology, 2020, 134, 110880.	2.8	13
134	Frog skeletal muscle fibers recovering from fatigue have reduced charge movement. Journal of Muscle Research and Cell Motility, 2000, 21, 621-628.	2.0	12
135	Thyroid hormone receptor α can control action potential duration in mouse ventricular myocytes through the KCNE1 ion channel subunit. Acta Physiologica, 2010, 198, 133-142.	3.8	12
136	Enhanced Cardiomyocyte Ca ²⁺ Cycling Precedes Terminal AV-Block in Mitochondrial Cardiomyopathy <i>Mterf3</i> KO Mice. Antioxidants and Redox Signaling, 2011, 15, 2455-2464.	5.4	11
137	Force generated by myosin cross-bridges is reduced in myofibrils exposed to ROS/RNS. American Journal of Physiology - Cell Physiology, 2019, 317, C1304-C1312.	4.6	11
138	Measuring Ca2+ in Living Cells. Advances in Experimental Medicine and Biology, 2020, 1131, 7-26.	1.6	11
139	An updated h-index measures both the primary and total scientific output of a researcher. Discoveries, 2015, 3, e50.	2.3	10
140	A numerical model for fatigue effects in whole-body human exercise. Mathematical and Computer Modelling of Dynamical Systems, 2016, 22, 21-38.	2.2	9
141	Improved skeletal muscle fatigue resistance in experimental autoimmune myositis mice following high-intensity interval training. Arthritis Research and Therapy, 2022, 24, .	3.5	9
142	Insulin-mediated activation of glycogen synthase in isolated skeletal muscle: role of mitochondrial respiration. Biochimica Et Biophysica Acta - General Subjects, 1995, 1244, 229-232.	2.4	8
143	Electrical Stimulation Prevents Preferential Skeletal Muscle Myosin Loss in Steroid-Denervation Rats. Frontiers in Physiology, 2018, 9, 1111.	2.8	8
144	Carbohydrates do not accelerate force recovery after glycogenâ€depleting followed by highâ€intensity exercise in humans. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 998-1007.	2.9	8

#	Article	IF	CITATIONS
145	Usage of a Localised Microflow Device to Show that Mitochondrial Networks Are Not Extensive in Skeletal Muscle Fibres. PLoS ONE, 2014, 9, e108601.	2.5	8
146	Eccentric Resistance Training Ameliorates Muscle Weakness in a Mouse Model of Idiopathic Inflammatory Myopathies. Arthritis and Rheumatology, 2021, 73, 848-857.	5.6	7
147	Intramuscular Contributions to Low-Frequency Force Potentiation Induced by a High-Frequency Conditioning Stimulation. Frontiers in Physiology, 2017, 8, 712.	2.8	6
148	Neuromuscular electrical stimulation prevents skeletal muscle dysfunction in adjuvant-induced arthritis rat. PLoS ONE, 2017, 12, e0179925.	2.5	6
149	Sphingomyelinase activity promotes atrophy and attenuates force in human muscle fibres and is elevated in heart failure patients. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2551-2561.	7.3	6
150	Reactive oxygen and nitrogen species in skeletal muscle: acute and longâ€ŧerm effects. Journal of Physiology, 2011, 589, 2117-2118.	2.9	5
151	Larger improvements in fatigue resistance and mitochondrial function with high―than with lowâ€intensity contractions during interval training of mouse skeletal muscle. FASEB Journal, 2021, 35, e21988.	0.5	5
152	α-Actinin-3: Why Gene Loss Is an Evolutionary Gain. PLoS Genetics, 2015, 11, e1004908.	3.5	4
153	Recovery of fatiguedXenopus muscle fibres is markedly affected by the extracellular tonicity. Journal of Muscle Research and Cell Motility, 1990, 11, 147-153.	2.0	3
154	2â€Methoxyoestradiol inhibits glucose transport in rodent skeletal muscle. Experimental Physiology, 2010, 95, 892-898.	2.0	3
155	Fast skeletal muscle troponin activator CKâ€2066260 mitigates skeletal muscle weakness independently of the underlying cause. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1747-1757.	7.3	3
156	Impaired aerobic capacity and premature fatigue preceding muscle weakness in the skeletal muscle Tfam-knockout mouse model. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	2
157	Response to Mörseburg etÂal American Journal of Human Genetics, 2022, 109, 973.	6.2	2
158	Reply to Barclay and Loiselle. American Journal of Physiology - Cell Physiology, 2007, 292, C613-C614.	4.6	1
159	A Novel Assay of Mechano-Transduction in Single Muscle Cells. Biophysical Journal, 2011, 100, 589a.	0.5	1
160	Cardiac Ca2+ and Free Radical Disturbances in Mice with Arthritis. Biophysical Journal, 2013, 104, 105a-106a.	0.5	1
161	Vitamin C and E Treatment Blocks Changes in Kynurenine Metabolism Triggered by Three Weeks of Sprint Interval Training in Recreationally Active Elderly Humans. Antioxidants, 2021, 10, 1443.	5.1	1
162	Increasing the resting time between drop jumps lessens delayed-onset muscle soreness and limits the extent of prolonged low-frequency force depression in human knee extensor muscles. European Journal of Applied Physiology, 2022, 122, 255-266.	2.5	1

#	Article	IF	CITATIONS
163	Crosstalk between nitrosative stress and altered Ca2 ⁺ handling in arthritis-induced skeletal muscle dysfunction. Annals of the Rheumatic Diseases, 2012, 71, A43.3-A44.	0.9	0
164	HMGB1 mediates muscle fatigue via TLR4 - a possible mechanism for muscle fatigue in patients with inflammatory myopathies. Annals of the Rheumatic Diseases, 2012, 71, A42.2-A43.	0.9	0
165	New editors take over. European Journal of Applied Physiology, 2013, 113, 823-823.	2.5	Ο
166	Enzymatic Dissociation Makes Skeletal Muscle Fibers Susceptible to Osmotic Stress and More Prone to Mitochondrial Calcium Uptake. Biophysical Journal, 2014, 106, 766a.	0.5	0
167	Enhanced Cardiac Contractility and Ca2+ Signalling Following Dietary Nitrate Supplementation in Mice. Biophysical Journal, 2016, 110, 598a-599a.	0.5	Ο
168	Reactive oxygen species and glucose transport during exercise. , 2007, , 16-17.		0
169	Knock down of TRPC3 decreases Ca 2+ influx and insulinâ€mediated glucose uptake in adult skeletal muscle. FASEB Journal, 2008, 22, 1226.5.	0.5	Ο
170	Oxidative stress restores force loss in skeletal muscle following eccentric contractions. FASEB Journal, 2010, 24, 801.24.	0.5	0
171	Carbon Nanotubes Coupled to siRNA Generates Efficient Transfection and is a Tool for Examining Glucose Uptake in Skeletal Muscle. , 2012, , 81-97.		Ο
172	Voluntary exercise reduces cachexia and improves muscle function in mice carrying mammary gland tumors. FASEB Journal, 2012, 26, 1142.7.	0.5	0
173	Doublet Discharges Improve Force During Fatigue in Single Fibers. FASEB Journal, 2012, 26, 1078.40.	0.5	0
174	Impaired calcium handling in skeletal muscles of mitochondrialâ€DNAâ€mutator mice. FASEB Journal, 2012, 26, 1078.20.	0.5	0
175	Dietary nitrate dramatically increases force in mouse skeletal muscle. FASEB Journal, 2012, 26, 1078.2.	0.5	0
176	Isolated Intercostal Muscle Fibers as a Human Skeletal Muscle Ex Vivo Model. FASEB Journal, 2015, 29, LB700.	0.5	0