Guy A Orban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309940/publications.pdf

Version: 2024-02-01

91 9,612 51
papers citations h-index

51 89
h-index g-index

94 5666

46693

94 94 all docs citations

94 times ranked 5666 citing authors

#	Article	IF	Citations
1	Sixty years of visual cortex single-cell studies to explain the perceptual deficits of Davida. Cognitive Neuropsychology, 2022, 39, 60-63.	0.4	1
2	Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey. Journal of Neural Engineering, 2021, 18, 024001.	1.8	4
3	From Observed Action Identity to Social Affordances. Trends in Cognitive Sciences, 2021, 25, 493-505.	4.0	36
4	The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. Neurolmage, 2021, 237, 118220.	2.1	15
5	Parietal maps of visual signals for bodily action planning. Brain Structure and Function, 2021, 226, 2967-2988.	1.2	18
6	A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. Science Advances, 2020, 6, .	4.7	39
7	A parietal region processing numerosity of observed actions: An FMRI study. European Journal of Neuroscience, 2020, 52, 4732-4750.	1.2	5
8	Human stereoEEG recordings reveal network dynamics of decision-making in a rule-switching task. Nature Communications, 2020, 11, 3075.	5.8	13
9	Stable readout of observed actions from format-dependent activity of monkey's anterior intraparietal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16596-16605.	3.3	24
10	Fast Compensatory Functional Network Changes Caused by Reversible Inactivation of Monkey Parietal Cortex. Cerebral Cortex, 2019, 29, 2588-2606.	1.6	12
11	The role of putative human anterior intraparietal sulcus area in observed manipulative action discrimination. Brain and Behavior, 2019, 9, e01226.	1.0	14
12	Anterior Intraparietal Area: A Hub in the Observed Manipulative Action Network. Cerebral Cortex, 2019, 29, 1816-1833.	1.6	51
13	Rapid and specific processing of person-related information in human anterior temporal lobe. Communications Biology, 2019, 2, 5.	2.0	7
14	Binocular stereo acuity affects monocular three-dimensional shape perception in patients with strabismus. British Journal of Ophthalmology, 2018, 102, 1413-1418.	2.1	9
15	Multiple time courses of somatosensory responses in human cortex. Neurolmage, 2018, 169, 212-226.	2.1	36
16	Characterization of network structure in stereoEEG data using consensus-based partial coherence. Neurolmage, 2018, 179, 385-402.	2.1	6
17	Action Observation as a Visual Process: Different Classes of Actions Engage Distinct Regions of Human PPC. Exploring Complexity, 2018, , 1-32.	0.1	3
18	Observing Others Speak or Sing Activates Spt and Neighboring Parietal Cortex. Journal of Cognitive Neuroscience, 2017, 29, 1002-1021.	1.1	19

#	Article	IF	Citations
19	Monkeys face face distortions. Nature Neuroscience, 2017, 20, 635-636.	7.1	О
20	Decomposing Tool-Action Observation: A Stereo-EEG Study. Cerebral Cortex, 2017, 27, 4229-4243.	1.6	12
21	Comparing Parietal Quantity-Processing Mechanisms between Humans and Macaques. Trends in Cognitive Sciences, 2017, 21, 779-793.	4.0	32
22	Not all observed actions are perceived equally. Scientific Reports, 2017, 7, 17084.	1.6	4
23	Functional definitions of parietal areas in human and non-human primates. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160118.	1.2	59
24	Action observation: the less-explored part of higher-order vision. Scientific Reports, 2016, 6, 36742.	1.6	11
25	Functional Imaging of the Human Visual System. Neuromethods, 2016, , 545-572.	0.2	0
26	Stereoscopically Observing Manipulative Actions. Cerebral Cortex, 2016, 26, 3591-3610.	1.6	16
27	Seeing biological actions in 3 <scp>D</scp> : An f <scp>MRI</scp> study. Human Brain Mapping, 2016, 37, 203-219.	1.9	20
28	Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites. Journal of Neural Engineering, 2016, 13, 046006.	1.8	41
29	Four-dimensional maps of the human somatosensory system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1936-43.	3.3	87
30	The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study. Human Brain Mapping, 2015, 36, 3845-3866.	1.9	46
31	Visual gravity cues in the interpretation of biological movements: neural correlates in humans. Neurolmage, 2015, 104, 221-230.	2.1	46
32	A human homologue of monkey F5c. Neurolmage, 2015, 111, 251-266.	2.1	28
33	3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective. Journal of Neuroscience, 2015, 35, 12673-12692.	1.7	27
34	The transition in the ventral stream from feature to real-world entity representations. Frontiers in Psychology, 2014, 5, 695.	1.1	38
35	The Retinotopic Organization of Macaque Occipitotemporal Cortex Anterior to V4 and Caudoventral to the Middle Temporal (MT) Cluster. Journal of Neuroscience, 2014, 34, 10168-10191.	1.7	88
36	Correspondences between retinotopic areas and myelin maps in human visual cortex. NeuroImage, 2014, 99, 509-524.	2.1	117

#	Article	IF	Citations
37	The mirror system in human and nonhuman primates. Behavioral and Brain Sciences, 2014, 37, 215-216.	0.4	1
38	Monkey Cortex through fMRI Glasses. Neuron, 2014, 83, 533-550.	3.8	95
39	Fine-grained stimulus representations in body selective areas of human occipito-temporal cortex. Neurolmage, 2014, 102, 484-497.	2.1	22
40	The neural basis of human tool use. Frontiers in Psychology, 2014, 5, 310.	1.1	189
41	Functional properties of the left parietal tool use region. Neurolmage, 2013, 78, 83-93.	2.1	95
42	Evolutionarily Novel Functional Networks in the Human Brain?. Journal of Neuroscience, 2013, 33, 3259-3275.	1.7	266
43	Common and Segregated Processing of Observed Actions in Human SPL. Cerebral Cortex, 2013, 23, 2734-2753.	1.6	99
44	An area specifically devoted to tool use in human left inferior parietal lobule. Behavioral and Brain Sciences, 2012, 35, 234-234.	0.4	13
45	Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. Nature Methods, 2012, 9, 277-282.	9.0	101
46	Integration of shape and motion cues in biological motion processing in the monkey STS. NeuroImage, 2012, 60, 911-921.	2.1	84
47	The Extraction of 3D Shape in the Visual System of Human and Nonhuman Primates. Annual Review of Neuroscience, 2011, 34, 361-388.	5.0	154
48	Action Observation Circuits in the Macaque Monkey Cortex. Journal of Neuroscience, 2011, 31, 3743-3756.	1.7	230
49	The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors. Journal of Neuroscience, 2010, 30, 9801-9820.	1.7	320
50	Coding Observed Motor Acts: Different Organizational Principles in the Parietal and Premotor Cortex of Humans. Journal of Neurophysiology, 2010, 104, 128-140.	0.9	191
51	The Selectivity of Neurons in the Macaque Fundus of the Superior Temporal Area for Three-Dimensional Structure from Motion. Journal of Neuroscience, 2010, 30, 15491-15508.	1.7	26
52	The Extraction of Depth Structure from Shading and Texture in the Macaque Brain. PLoS ONE, 2009, 4, e8306.	1.1	33
53	The Representation of Tool Use in Humans and Monkeys: Common and Uniquely Human Features. Journal of Neuroscience, 2009, 29, 11523-11539.	1.7	354
54	The Processing of Three-Dimensional Shape from Disparity in the Human Brain. Journal of Neuroscience, 2009, 29, 727-742.	1.7	218

#	Article	IF	CITATIONS
55	A Distinct Representation of Three-Dimensional Shape in Macaque Anterior Intraparietal Area: Fast, Metric, and Coarse. Journal of Neuroscience, 2009, 29, 10613-10626.	1.7	116
56	Human Functional Magnetic Resonance Imaging Reveals Separation and Integration of Shape and Motion Cues in Biological Motion Processing. Journal of Neuroscience, 2009, 29, 7315-7329.	1.7	180
57	The monkey ventral premotor cortex processes 3D shape from disparity. NeuroImage, 2009, 47, 262-272.	2.1	60
58	The Extraction of 3D Shape from Texture and Shading in the Human Brain. Cerebral Cortex, 2008, 18, 2416-2438.	1.6	92
59	Higher Order Visual Processing in Macaque Extrastriate Cortex. Physiological Reviews, 2008, 88, 59-89.	13.1	227
60	Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape. Neuron, 2007, 55, 493-505.	3.8	163
61	Selectivity of Neuronal Adaptation Does Not Match Response Selectivity: A Single-Cell Study of the fMRI Adaptation Paradigm. Neuron, 2006, 49, 307-318.	3.8	371
62	Processing of Kinetic Boundaries in Macaque V4. Journal of Neurophysiology, 2006, 95, 1864-1880.	0.9	58
63	The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study. Journal of Neuroscience, 2004, 24, 2551-2565.	1.7	238
64	Color Discrimination Involves Ventral and Dorsal Stream Visual Areas. Cerebral Cortex, 2004, 14, 803-822.	1.6	61
65	Perception of Three-Dimensional Shape From Specular Highlights, Deformations of Shading, and Other Types of Visual Information. Psychological Science, 2004, 15, 565-570.	1.8	109
66	Attention to 3-D Shape, 3-D Motion, and Texture in 3-D Structure from Motion Displays. Journal of Cognitive Neuroscience, 2004, 16, 665-682.	1.1	110
67	Search for Color 'Center(s)' in Macaque Visual Cortex. Cerebral Cortex, 2004, 14, 353-363.	1.6	102
68	The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys. Journal of Neuroscience, 2003, 23, 7395-7406.	1.7	156
69	The Organization of Orientation Selectivity Throughout Macaque Visual Cortex. Cerebral Cortex, 2002, 12, 647-662.	1.6	112
70	Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex. Science, 2002, 298, 413-415.	6.0	378
71	Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla. NeuroImage, 2002, 16, 283-294.	2.1	250
72	Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys. Neuron, 2001, 32, 565-577.	3.8	482

#	Article	IF	CITATIONS
73	Processing of Kinetically Defined Boundaries in Areas V1 and V2 of the Macaque Monkey. Journal of Neurophysiology, 2000, 84, 2786-2798.	0.9	69
74	Three-Dimensional Shape Coding in Inferior Temporal Cortex. Neuron, 2000, 27, 385-397.	3.8	163
75	Attention to Speed of Motion, Speed Discrimination, and Task Difficulty: An fMRI Study. NeuroImage, 2000, 11, 612-623.	2.1	97
76	Selectivity for 3D Shape That Reveals Distinct Areas Within Macaque Inferior Temporal Cortex. Science, 2000, 288, 2054-2056.	6.0	249
77	Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8217-8222.	3.3	207
78	Motion-responsive regions of the human brain. Experimental Brain Research, 1999, 127, 355-370.	0.7	333
79	Human Cortical Regions Involved in Extracting Depth from Motion. Neuron, 1999, 24, 929-940.	3.8	161
80	The neuronal machinery involved in successive orientation discrimination. Progress in Neurobiology, 1998, 55, 117-147.	2.8	37
81	The kinetic occipital region in human visual cortex. Cerebral Cortex, 1997, 7, 283-292.	1.6	178
82	The kinetic occipital (KO) region in man: an fMRI study. Cerebral Cortex, 1997, 7, 690-701.	1.6	194
83	Effects of Inferior Temporal Lesions on Two Types of Orientation Discrimination in the Macaque Monkey. European Journal of Neuroscience, 1997, 9, 229-245.	1.2	27
84	Selectivity of Macaque MT/V5 Neurons for Surface Orientation in Depth Specified by Motion. European Journal of Neuroscience, 1997, 9, 956-964.	1.2	83
85	Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity Journal of Physiology, 1995, 483, 797-810.	1.3	339
86	Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey. Journal of Neurophysiology, 1995, 74, 1258-1270.	0.9	75
87	Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings. Journal of Neurophysiology, 1995, 73, 1341-1354.	0.9	82
88	Orientation discrimination of motion-defined gratings. Vision Research, 1994, 34, 1331-1334.	0.7	20
89	Cue-invariant shape selectivity of macaque inferior temporal neurons. Science, 1993, 260, 995-997.	6.0	281
90	Human orientation discrimination tested with long stimuli. Vision Research, 1984, 24, 121-128.	0.7	181

#	Article	IF	CITATIONS
91	End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. Journal of Neurophysiology, 1979, 42, 818-832.	0.9	94