Manabu Kiguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309841/publications.pdf

Version: 2024-02-01

220 5,595 papers citations

42 h-index 63 g-index

227 all docs 227 docs citations 227 times ranked 4971 citing authors

#	Article	IF	CITATIONS
1	Principal Component Analysis of Surface-Enhanced Raman Scattering Spectra Revealing Isomer-Dependent Electron Transport in Spiropyran Molecular Junctions: Implications for Nanoscale Molecular Electronics. ACS Omega, 2022, 7, 5578-5583.	3.5	15
2	Structural Asymmetry of Metallic Single-Atom Contacts Detected by Current–Voltage Characteristics. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 11919-11926.	8.0	4
3	Single-molecule determination of chemical equilibrium of DNA intercalation by electrical conductance. Chemical Communications, 2021, 57, 4380-4383.	4.1	O
4	Single-molecule Electric Switching Induced by Acid-Base Reaction. Chemistry Letters, 2021, 50, 1271-1273.	1.3	1
5	Water Splitting Induced by Visible Light at a Copperâ€Based Singleâ€Molecule Junction. Small, 2021, 17, e2008109.	10.0	3
6	Water Splitting: Water Splitting Induced by Visible Light at a Copperâ€Based Singleâ€Molecule Junction (Small 28/2021). Small, 2021, 17, 2170143.	10.0	0
7	Single-molecule junction spontaneously restored by DNA zipper. Nature Communications, 2021, 12, 5762.	12.8	7
8	Elementary processes of DNA surface hybridization resolved by single-molecule kinetics: implication for macroscopic device performance. Chemical Science, 2021, 12, 2217-2224.	7.4	5
9	Single-molecule junctions of multinuclear organometallic wires: long-range carrier transport brought about by metal–metal interaction. Chemical Science, 2021, 12, 4338-4344.	7.4	21
10	Anomalous spin relaxation in graphene nanostructures on the high temperature annealed surface of hydrogenated diamond nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 19209-19218.	2.8	0
11	Kinetic investigation of a chemical process in single-molecule junction. Chemical Communications, 2020, 56, 309-312.	4.1	11
12	Structure and Electron Transport at Metal Atomic Junctions Doped with Dichloroethylene. ChemPhysChem, 2020, 21, 175-180.	2.1	3
13	Single-Molecule Junction of a Cationic Rh(III) Polyyne Molecular Wire. Inorganic Chemistry, 2020, 59, 13254-13261.	4.0	11
14	Effects of water adsorption on conductive filaments of a Ta2O5 atomic switch investigated by nondestructive electrical measurements. Applied Physics Letters, 2020, 117, .	3.3	1
15	The practical electromagnetic effect in surface-enhanced Raman scattering observed by the lithographically fabricated gold nanosquare dimers. AIP Advances, 2020, 10, .	1.3	10
16	Tolerance to Stretching in Thiol-Terminated Single-Molecule Junctions Characterized by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2020, 11, 6712-6717.	4.6	15
17	Structure and Electron Transport at Metal Atomic Junctions Doped with Dichloroethylene. ChemPhysChem, 2020, 21, 274-274.	2.1	0
18	Selective formation of molecular junctions with high and low conductance states by tuning the velocity of electrode displacement. Physical Chemistry Chemical Physics, 2020, 22, 4544-4548.	2.8	2

#	Article	IF	Citations
19	Hybrid Molecular Junctions Using Au–S and Auâ⁻'Ĭ€ Bindings. Journal of Physical Chemistry C, 2020, 124, 9261-9268.	3.1	7
20	Investigation of Ag and Cu Filament Formation Inside the Metal Sulfide Layer of an Atomic Switch Based on Point-Contact Spectroscopy. ACS Applied Materials & Earn; Interfaces, 2019, 11, 27178-27182.	8.0	9
21	Electric-Field-Controllable Conductance Switching of an Overcrowded Ethylene Self-Assembled Monolayer. Journal of the American Chemical Society, 2019, 141, 18544-18550.	13.7	17
22	Tuneable single-molecule electronic conductance of C ₆₀ by encapsulation. Physical Chemistry Chemical Physics, 2019, 21, 12606-12610.	2.8	14
23	Effect of Bias Voltage on a Single-Molecule Junction Investigated by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2019, 123, 15267-15272.	3.1	6
24	Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies. Chemical Science, 2019, 10, 6261-6269.	7.4	32
25	Stretch dependent electronic structure and vibrational energy of the bipyridine single molecule junction. Physical Chemistry Chemical Physics, 2019, 21, 16910-16913.	2.8	7
26	Control of molecular orientation in a single-molecule junction with a tripodal triptycene anchoring unit: toward a simple and facile single-molecule diode. Japanese Journal of Applied Physics, 2019, 58, 035003.	1.5	8
27	Highly Reproducible Formation of a Polymer Singleâ€Molecule Junction for a Wellâ€Defined Current Signal. Angewandte Chemie - International Edition, 2019, 58, 9109-9113.	13.8	8
28	Highly Reproducible Formation of a Polymer Singleâ€Molecule Junction for a Wellâ€Defined Current Signal. Angewandte Chemie, 2019, 131, 9207-9211.	2.0	0
29	Bias Voltage Induced Surface-Enhanced Raman Scattering Enhancement on the Single-Molecule Junction. Journal of Physical Chemistry C, 2019, 123, 6502-6507.	3.1	11
30	Triptycene Tripods for the Formation of Highly Uniform and Densely Packed Self-Assembled Monolayers with Controlled Molecular Orientation. Journal of the American Chemical Society, 2019, 141, 5995-6005.	13.7	48
31	Near-infrared-light-induced decomposition of Rhodamine B triggered by localized surface plasmon at gold square dimers with well-defined separation distance. AIP Advances, 2019, 9, .	1.3	1
32	Investigation on the formation process of metal atomic filament for metal sulfide atomic switches by electrical measurement. Nanotechnology, 2019, 30, 125202.	2.6	6
33	Surface enhanced Raman scattering on molecule junction. Applied Materials Today, 2019, 14, 76-83.	4.3	10
34	Formation of a Chain-like Water Single Molecule Junction with Pd Electrodes. Journal of Physical Chemistry C, 2018, 122, 4698-4703.	3.1	4
35	Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by Current versus Bias Voltage Characteristics. Journal of the American Chemical Society, 2018, 140, 3760-3767.	13.7	42
36	Impact of junction formation processes on single molecular conductance. Physical Chemistry Chemical Physics, 2018, 20, 7947-7952.	2.8	11

3

#	Article	IF	CITATIONS
37	Single-molecule junction of an overcrowded ethylene with binary conductance states. Japanese Journal of Applied Physics, 2018, 57, 03EG05.	1.5	6
38	Ruthenium Trisâ€bipyridine Singleâ€Molecule Junctions with Multiple Joint Configurations. Chemistry - an Asian Journal, 2018, 13, 1297-1301.	3.3	6
39	Magnetism of Nanographene-Based Microporous Carbon and Its Applications: Interplay of Edge Geometry and Chemistry Details in the Edge State. Physical Review Applied, 2018, 9, .	3.8	9
40	Single-molecule junctions of π molecules. Materials Chemistry Frontiers, 2018, 2, 214-218.	5.9	13
41	Studies on single-molecule bridging metal electrodes: development of new characterization technique and functionalities. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 350-359.	3.8	4
42	Controlling stacking order and charge transport in π-stacks of aromatic molecules based on surface assembly. Chemical Communications, 2018, 54, 12443-12446.	4.1	20
43	Dependence of Stretch Length on Electrical Conductance and Electronic Structure of the Benzenedithiol Single Molecular Junction. E-Journal of Surface Science and Nanotechnology, 2018, 16, 145-149.	0.4	2
44	Measurement of Electron Transfer within a Single Supramolecular Assembly Containing a Biological Molecule. Analytical Sciences, 2018, 34, 521-523.	1.6	1
45	"Doping―of Polyyne with an Organometallic Fragment Leads to Highly Conductive Metallapolyyne Molecular Wire. Journal of the American Chemical Society, 2018, 140, 10080-10084.	13.7	78
46	Electronic Properties of Single Atom and Molecule Junctions. ChemElectroChem, 2018, 5, 2508-2517.	3.4	5
47	Electronic Properties of Singleâ€Atom and â€Molecule Junctions. ChemElectroChem, 2018, 5, 2507-2507.	3.4	0
48	Evaluation of the Kinetic Property of Single-Molecule Junctions by Tunneling Current Measurements. Analytical Sciences, 2018, 34, 639-641.	1.6	2
49	Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics. Micromachines, 2018, 9, 67.	2.9	17
50	Photochemical Reaction Using Aminobenzenethiol Single Molecular Junction. E-Journal of Surface Science and Nanotechnology, 2018, 16, 137-141.	0.4	2
51	Atomic structure of water/Au, Ag, Cu and Pt atomic junctions. Physical Chemistry Chemical Physics, 2017, 19, 4673-4677.	2.8	8
52	Evaluation of the Electronic Structure of Singleâ€Molecule Junctions Based on Current–Voltage and Thermopower Measurements: Application to C ₆₀ Singleâ€Molecule Junction. Chemistry - an Asian Journal, 2017, 12, 440-445.	3.3	19
53	Single Molecular Junction Study on H ₂ O@C ₆₀ : H ₂ O is "Electrostatically Isolated― ChemPhysChem, 2017, 18, 1229-1233.	2.1	14
54	Inorganic and Organometallic Molecular Wires for Single-Molecule Devices. Chemistry - A European Journal, 2017, 23, 4740-4740.	3.3	1

#	Article	IF	CITATIONS
55	Chemically induced topological zero mode at graphene armchair edges. Physical Chemistry Chemical Physics, 2017, 19, 5145-5154.	2.8	12
56	<i>In situ</i> observation of the formation process for free-standing Au nanowires with a scanning electron microscope. Nanotechnology, 2017, 28, 105707.	2.6	2
57	Specific single-molecule detection of glucose in a supramolecularly designed tunnel junction. Chemical Communications, 2017, 53, 5212-5215.	4.1	10
58	Frontispiece: Inorganic and Organometallic Molecular Wires for Singleâ€Molecule Devices. Chemistry - A European Journal, 2017, 23, .	3.3	0
59	Triphosphasumanene Trisulfide: High Out-of-Plane Anisotropy and Janus-Type π-Surfaces. Journal of the American Chemical Society, 2017, 139, 5787-5792.	13.7	75
60	Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal–molecule interaction. Physical Chemistry Chemical Physics, 2017, 19, 9843-9848.	2.8	10
61	Inorganic and Organometallic Molecular Wires for Singleâ€Molecule Devices. Chemistry - A European Journal, 2017, 23, 4741-4749.	3.3	65
62	Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions. Scientific Reports, 2017, 7, 7949.	3.3	12
63	Single-molecule conductance of DNA gated and ungated by DNA-binding molecules. Chemical Communications, 2017, 53, 10378-10381.	4.1	15
64	Highly-conducting molecular circuits based on antiaromaticity. Nature Communications, 2017, 8, 15984.	12.8	111
65	Governing the Metal–Molecule Interface: Towards New Functionality in Single-Molecule Junctions. Bulletin of the Chemical Society of Japan, 2017, 90, 1-11.	3.2	26
66	Surface-Enhanced Raman Scattering in Molecular Junctions. Sensors, 2017, 17, 1901.	3.8	10
67	Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique. Sensors, 2017, 17, 956.	3.8	14
68	Evaluation of the energy barrier for failure of Au atomic contact based on temperature dependent current–voltage characteristics. Physical Chemistry Chemical Physics, 2016, 18, 21586-21589.	2.8	4
69	Resolving metal-molecule interfaces at single-molecule junctions. Scientific Reports, 2016, 6, 26606.	3.3	55
70	Surface enhanced Raman scattering of single 1,4-Benzenedithiol molecular junction. International Journal of Modern Physics B, 2016, 30, 1642010.	2.0	2
71	Single Tripyridyl–Triazine Molecular Junction with Multiple Binding Sites. Journal of Physical Chemistry C, 2016, 120, 8936-8940.	3.1	14
72	Electrical Conductance of a Single 1,2-Ethanedithiol Molecular Junction Prepared in Ultrahigh Vacuum. Chemistry Letters, 2016, 45, 804-806.	1.3	0

#	Article	IF	Citations
73	Single-molecule junctions for molecular electronics. Journal of Materials Chemistry C, 2016, 4, 8842-8858.	5. 5	88
74	Bowl Inversion and Electronic Switching of Buckybowls on Gold. Journal of the American Chemical Society, 2016, 138, 12142-12149.	13.7	44
75	Effect of Ag Ion Insertion on Electron Transport through Au Ion Wires. Chemistry Letters, 2016, 45, 764-766.	1.3	5
76	Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology, 2016, 27, 495703.	2.6	18
77	Atomic and Electronic Structures of a Single Oxygen Molecular Junction with Au, Ag, and Cu Electrodes. Journal of Physical Chemistry C, 2016, 120, 16254-16258.	3.1	11
78	Determination of the number of atoms present in nano contact based on shot noise measurements with highly stable nano-fabricated electrodes. Nanotechnology, 2016, 27, 295203.	2.6	2
79	Scanning tunnelling microscopy analysis of octameric o-phenylenes on Au(111). RSC Advances, 2016, 6, 55970-55975.	3.6	1
80	Organometallic molecular wires as versatile modules for energy-level alignment of the metal–molecule–metal junction. Chemical Communications, 2016, 52, 5796-5799.	4.1	45
81	Effect of the Molecule–Metal Interface on the Surface-Enhanced Raman Scattering of 1,4-Benzenedithiol. Journal of Physical Chemistry C, 2016, 120, 1038-1042.	3.1	26
82	Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics. Journal of the American Chemical Society, 2016, 138, 1294-1300.	13.7	88
83	Extension of Photopolymerization Region from the Nanoscale to the Macroscopic Scale Using a Chemically Amplified Photoresist. Bulletin of the Chemical Society of Japan, 2015, 88, 277-282.	3.2	0
84	Concise Synthesis and Facile Nanotube Assembly of a Symmetrically Multifunctionalized Cycloparaphenylene. Chemistry - A European Journal, 2015, 21, 18900-18904.	3.3	46
85	Frontispiece: Concise Synthesis and Facile Nanotube Assembly of a Symmetrically Multifunctionalized Cycloparaphenylene. Chemistry - A European Journal, 2015, 21, .	3.3	0
86	High electronic couplings of single mesitylene molecular junctions. Beilstein Journal of Nanotechnology, 2015, 6, 2431-2437.	2.8	10
87	Self-Assembly of Nanometer-Sized Boroxine Cages from Diboronic Acids. Journal of the American Chemical Society, 2015, 137, 7015-7018.	13.7	86
88	Surface enhanced Raman scattering of a single molecular junction. Physical Chemistry Chemical Physics, 2015, 17, 21254-21260.	2.8	18
89	Electrical conductance and structure of copper atomic junctions in the presence of water molecules. Physical Chemistry Chemical Physics, 2015, 17, 32436-32442.	2.8	10
90	Formation of Single Cu Atomic Chain in Nitrogen Atmosphere. Journal of Physical Chemistry C, 2015, 119, 862-866.	3.1	14

#	Article	IF	CITATIONS
91	Symmetry of Single Hydrogen Molecular Junction with Au, Ag, and Cu Electrodes. Journal of Physical Chemistry C, 2015, 119, 19143-19148.	3.1	25
92	Rectifying Electron-Transport Properties through Stacks of Aromatic Molecules Inserted into a Self-Assembled Cage. Journal of the American Chemical Society, 2015, 137, 5939-5947.	13.7	126
93	Single naphthalene and anthracene molecular junctions using Ag and Cu electrodes in ultra high vacuum. Applied Surface Science, 2015, 354, 362-366.	6.1	2
94	Highly conductive single naphthalene and anthracene molecular junction with well-defined conductance. Applied Physics Letters, 2015, 106, .	3.3	16
95	Effect of Mechanical Strain on Electric Conductance of Molecular Junctions. Journal of Physical Chemistry C, 2015, 119, 19452-19457.	3.1	11
96	Surface enhanced Raman scattering of molecules in metallic nanogaps. Journal of Optics (United) Tj ETQq0 0 0 n	gBŢ_lOver	lock 10 Tf 50
97	Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer. Physical Review B, 2014, 89, .	3.2	44
98	Investigation on the Pyrazine Molecular Junction Studied by Conductance Measurement and Near Edge X-ray Absorption Fine Structure. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 166-172.	2.1	2
99	Highly stable Au atomic contacts covered with benzenedithiol under ambient conditions. Physical Chemistry Chemical Physics, 2014, 16, 15662.	2.8	10
100	Preferential oxidation-induced etching of zigzag edges in nanographene. Physical Chemistry Chemical Physics, 2014, 16, 21363-21371.	2.8	3
101	Heat treatment effect on the electronic and magnetic structures of nanographene sheets investigated through electron spectroscopy and conductance measurements. Physical Chemistry Chemical Physics, 2014, 16, 7280-7289.	2.8	12
102	Anomalous metallic-like transport of Co–Pd ferromagnetic nanoparticles cross-linked with π-conjugated molecules having a rotational degree of freedom. Physical Chemistry Chemical Physics, 2014, 16, 288-296.	2.8	6
103	Magnetic edge-states in nanographene, HNO3-doped nanographene and its residue compounds of nanographene-based nanoporous carbon. Physical Chemistry Chemical Physics, 2014, 16, 6273-6282.	2.8	6
104	Role of edge geometry and chemistry in the electronic properties of graphene nanostructures. Faraday Discussions, 2014, 173, 173-199.	3.2	58
105	Fabrication of single linear aromatic molecular junction with high formation probability. Applied Physics Express, 2014, 7, 105201.	2.4	7
106	Electron Transport Properties of Au, Ag, and Cu Atomic Contacts in a Hydrogen Environment. Journal of Physical Chemistry C, 2014, 118, 7489-7493.	3.1	25
107	Additive Electron Pathway and Nonadditive Molecular Conductance by Using a Multipodal Bridging Compound. Journal of Physical Chemistry C, 2014, 118, 5275-5283.	3.1	17
108	Single Molecular Resistive Switch Obtained via Sliding Multiple Anchoring Points and Varying Effective Wire Length. Journal of the American Chemical Society, 2014, 136, 7327-7332.	13.7	101

#	Article	IF	CITATIONS
109	Synthesis of One-Dimensional Metal-Containing Insulated Molecular Wire with Versatile Properties Directed toward Molecular Electronics Materials. Journal of the American Chemical Society, 2014, 136, 1742-1745.	13.7	77
110	Development of edge state on graphite surface induced by Ar+ irradiation studied using near-edge X-ray absorption fine structure spectroscopy. Carbon, 2014, 72, 152-159.	10.3	3
111	Molecular Wiring Method Based on Polymerization or Copolymerization of an Insulated π-Conjugated Monomer. Bulletin of the Chemical Society of Japan, 2014, 87, 871-873.	3.2	9
112	Metal atomic contacts under defined environmental conditions. Transactions of the Materials Research Society of Japan, 2014, 39, 225-229.	0.2	0
113	Electronic State of Oxidized Nanographene Edge with Atomically Sharp Zigzag Boundaries. ACS Nano, 2013, 7, 6868-6874.	14.6	24
114	Single Molecular Bridging of Au Nanogap Using Aryl Halide Molecules. Journal of Physical Chemistry C, 2013, 117, 24277-24282.	3.1	27
115	Self-Aligned Formation of Sub $1\mathrm{nm}$ Gaps Utilizing Electromigration during Metal Deposition. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12869-12875.	8.0	23
116	Single molecule bridging between metal electrodes. Physical Chemistry Chemical Physics, 2013, 15, 2253-2267.	2.8	96
117	Molecular rectification in triangularly shaped graphene nanoribbons. Journal of Computational Chemistry, 2013, 34, 360-365.	3.3	19
118	Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y. Carbon, 2013, 62, 455-464.	10.3	66
119	Electronic Conductance of Platinum Atomic Contact in a Nitrogen Atmosphere. Journal of Physical Chemistry C, 2013, 117, 9903-9907.	3.1	12
120	Highly Conductive [3× <i>n</i>) Goldâ€Ion Clusters Enclosed within Selfâ€Assembled Cages. Angewandte Chemie - International Edition, 2013, 52, 6202-6205.	13.8	69
121	Conductance and SERS Measurement of Benzenedithiol Molecules Bridging Between Au Electrodes. Journal of Physical Chemistry C, 2013, 117, 1791-1795.	3.1	47
122	Single Molecule Dynamics at a Mechanically Controllable Break Junction in Solution at Room Temperature. Journal of the American Chemical Society, 2013, 135, 1009-1014.	13.7	138
123	Mechanically controllable bi-stable states in a highly conductive single pyrazine molecular junction. Nanotechnology, 2013, 24, 315201.	2.6	23
124	Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Physical Review B, 2013, 87, .	3.2	41
125	Metal atomic contact under electrochemical potential control. Journal of Physics Condensed Matter, 2012, 24, 164212.	1.8	4
126	The self-breaking mechanism of atomic scale Au nanocontacts. Nanotechnology, 2012, 23, 405702.	2.6	9

#	Article	IF	Citations
127	Magnetic Edge State of Nanographene and Unconventional Nanographene-Based Host–Guest Systems. Bulletin of the Chemical Society of Japan, 2012, 85, 249-264.	3.2	12
128	Magnetic Properties and Interplay between Nanographene Host and Nitric Acid Guest in Nanographene-Based Nanoporous Carbon. Bulletin of the Chemical Society of Japan, 2012, 85, 376-388.	3.2	2
129	Investigation on the effect of atomic defects on the breaking behaviors of gold nanowires. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	9
130	Electric Conductance of Single Ethylene and Acetylene Molecules Bridging between Pt Electrodes. Journal of Physical Chemistry C, 2012, 116, 18250-18255.	3.1	27
131	Electron transport through single endohedral Ce@C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>82</mml:mn></mml:msub></mml:math> metallofullerenes. Physical Review B, 2012, 86, .	3.2	35
132	Single-Molecule Conductance of π-Conjugated Rotaxane: New Method for Measuring Stipulated Electric Conductance of π-Conjugated Molecular Wire Using STM Break Junction. Small, 2012, 8, 726-730.	10.0	67
133	Electron Transport through Single Ï€â€Conjugated Molecules Bridging between Metal Electrodes. ChemPhysChem, 2012, 13, 1116-1126.	2.1	44
134	Nature of Electron Transport by Pyridine-Based Tripodal Anchors: Potential for Robust and Conductive Single-Molecule Junctions with Gold Electrodes. Journal of the American Chemical Society, 2011, 133, 3014-3022.	13.7	94
135	Magnetic edge state and dangling bond state of nanographene in activated carbon fibers. Physical Review B, 2011, 84, .	3.2	35
136	Effect of the environment on the electrical conductance of the single benzene-1,4-diamine molecule junction. Beilstein Journal of Nanotechnology, 2011, 2, 755-759.	2.8	29
137	Phosphine Sulfides as an Anchor Unit for Single Molecule Junctions. Chemistry Letters, 2011, 40, 174-176.	1.3	29
138	Electron Transport through Single Molecules Comprising Aromatic Stacks Enclosed in Selfâ€Assembled Cages. Angewandte Chemie - International Edition, 2011, 50, 5708-5711.	13.8	92
139	Inside Cover: Electron Transport through Single Molecules Comprising Aromatic Stacks Enclosed in Self-Assembled Cages (Angew. Chem. Int. Ed. 25/2011). Angewandte Chemie - International Edition, 2011, 50, 5588-5588.	13.8	1
140	Investigation on Atomic and Electric Conductance of the Single Benzene and C60 Molecule Junction Bridging between Metal Electrodes. Hyomen Kagaku, 2011, 32, 331-336.	0.0	0
141	Conductance of Single Triangular Dehydrobenzo[12]annulene Derivative Bridged between Au Electrodes. Chemistry Letters, 2010, 39, 788-789.	1.3	16
142	Conductance of single benzenediamine molecule bridging between Au electrodes. Transactions of the Materials Research Society of Japan, 2010, 35, 275-278.	0.2	0
143	Formation of a Pd atomic chain in a hydrogen atmosphere. Physical Review B, 2010, 81, .	3.2	25
	Atomic motion in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub><</mml:mrow></mml:math>	mml:mrow	/>

display="inline"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML" 3.2 23
display="inline"><mml:mrow><mml:msub><mml:mtext>D</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mrow></mml:math
junctions induced by phonon excitation. Physical Review B, 2010, 81, .

#	Article	IF	Citations
145	Electrical conductance of Rh atomic contacts under electrochemical potential control. Physical Review B, 2010, 81, .	3.2	7
146	Effect of Anchoring Group Position on Formation and Conductance of a Single Disubstituted Benzene Molecule Bridging Au Electrodes: Change of Conductive Molecular Orbital and Electron Pathway. Journal of Physical Chemistry C, 2010, 114, 22254-22261.	3.1	86
147	Fabrication of a Well-Defined Single Benzene Molecule Junction Using Ag Electrodes. Journal of Physical Chemistry Letters, 2010, 1, 3520-3523.	4.6	60
148	Formation of Co Atomic Wire in Hydrogen Atmosphere. Journal of Physical Chemistry Letters, 2010, 1, 923-926.	4.6	23
149	Molecular signature of highly conductive metal-molecule-metal junctions. Physical Review B, 2009, 80, .	3.2	30
150	Nonequilibrium Green's function study on the electronic structure and transportation behavior of the conjugated molecular junction: Terminal connections and intramolecular connections. Journal of Chemical Physics, 2009, 130, 244501.	3.0	34
151	Highly conductive single molecular junctions by direct binding of π-conjugated molecule to metal electrodes. Thin Solid Films, 2009, 518, 466-469.	1.8	18
152	Fabrication and conductance characterization of single C60 molecular junction in solutions. Chemical Physics Letters, 2009, 477, 189-193.	2.6	7
153	Theoretical Investigation on the Electron Transport Path through the Porphyrin Molecules and Chemisorption of CO. Journal of Physical Chemistry C, 2009, 113, 7416-7423.	3.1	42
154	Effect of End Group Position on the Formation of a Single Porphyrin Molecular Junction. Journal of Physical Chemistry C, 2009, 113, 9014-9017.	3.1	35
155	Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire. Physical Chemistry Chemical Physics, 2009, 11, 6514.	2.8	42
156	Electrical conductance of single C60 and benzene molecules bridging between Pt electrode. Applied Physics Letters, 2009, 95, .	3.3	62
157	Characterization of the Au Atomic Contact in a Hydrogen Environment Using Vibration Spectroscopy of a Single Molecular Junction. E-Journal of Surface Science and Nanotechnology, 2009, 7, 53-56.	0.4	0
158	Stable iron-group metal nano contact showing quantized conductance in solution. Surface Science, 2008, 602, 2333-2336.	1.9	12
159	Conductance of Single 1,4-Benzenediamine Molecule Bridging between Au and Pt Electrodes. Journal of Physical Chemistry C, 2008, 112, 13349-13352.	3.1	63
160	Conductance of Single C ₆₀ Molecule Bridging Metal Electrodes. Journal of Physical Chemistry C, 2008, 112, 8140-8143.	3.1	59
161	Dynamic Characterization of the Postbreaking Behavior of a Nanowire. Journal of Physical Chemistry C, 2008, 112, 20088-20094.	3.1	54
162	Three reversible states controlled on a gold monoatomic contact by the electrochemical potential. Physical Review B, 2008, 77, .	3.2	34

#	Article	IF	CITATIONS
163	Highly Conductive Molecular Junctions Based on Direct Binding of Benzene to Platinum Electrodes. Physical Review Letters, 2008, 101, 046801.	7.8	287
164	Conductance of single 4,4'-bipyridine molecule anchored on Au electrodes under electrochemical potential control. Transactions of the Materials Research Society of Japan, 2008, 33, 181-184.	0.2	2
165	The effect of bonding of a CO molecule on the conductance of atomic metal wires. Nanotechnology, 2007, 18, 035205.	2.6	39
166	Visualization of induced charge in an organic thin-film transistor by cross-sectional potential mapping. Journal of Applied Physics, 2007, 101, 094509.	2.5	26
167	Atomic and Electronic Structures and Properties of Nanomaterials on Metal Substrates. Bulletin of the Chemical Society of Japan, 2007, 80, 637-648.	3.2	2
168	The effect of hydrogen evolution reaction on conductance quantization of Au, Ag, Cu nanocontacts. Nanotechnology, 2007, 18, 424011.	2.6	18
169	Evidence for a Single Hydrogen Molecule Connected by an Atomic Chain. Physical Review Letters, 2007, 98, 146802.	7.8	78
170	Formation of stable nanowires from ferromagnetic metals using 2-butyne-1,4-diol. Surface Science, 2007, 601, 287-291.	1.9	13
171	Electronic structure of octane on $Cu(111)$ and $Ni(111)$ studied by near edge X-ray absorption fine structure. Surface Science, 2007, 601, 4074-4077.	1.9	4
172	Fabrication of stable metal nanowire showing conductance quantization in solution. Surface Science, 2007, 601, 4127-4130.	1.9	8
173	Quantized conductance behavior of Pt metal nanoconstrictions under electrochemical potential control. Surface Science, 2007, 601, 4122-4126.	1.9	8
174	Electric conductance of metal nanowires at mechanically controllable break junctions under electrochemical potential control. Surface Science, 2007, 601, 5262-5265.	1.9	7
175	Conductance Measurement of Metal Nano Contacts at Mechanically Controllable Break Junctions in Solution. Transactions of the Materials Research Society of Japan, 2007, 32, 405-408.	0.2	0
176	Fabrication of stable Pd nanowire assisted by hydrogen in solution. Applied Physics Letters, 2006, 88, 253112.	3.3	45
177	Anisotropic Polymerization of a Long-Chain Diacetylene Derivative Langmuirâ^'Blodgett Film on a Step-Bunched SiO2/Si Surface. Langmuir, 2006, 22, 5742-5747.	3.5	7
178	In-situ measurement of molecular orientation of the pentacene ultrathin films grown on SiO2 substrates. Surface Science, 2006, 600, 2518-2522.	1.9	27
179	Conductance Characteristics of Ni Nanoconstrictions Prepared in Solution. Japanese Journal of Applied Physics, 2006, 45, 2000-2003.	1.5	11
180	Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes. Applied Physics Letters, 2006, 89, 213104.	3.3	94

#	Article	IF	CITATIONS
181	Growth of nanographite on Pt(111) and its edge state. Applied Physics Letters, 2006, 88, 153126.	3.3	56
182	Thickness Dependent Characteristics of a Copper Phthalocyanine Thin-Film Transistor Investigated by in situ FET Measurement System. Molecular Crystals and Liquid Crystals, 2006, 455, 347-351.	0.9	9
183	Conductance bistability of gold nanowires at room temperature. Physical Review B, 2006, 73, .	3.2	68
184	Electrochemical Potential Control of Stretched Length of Au Nanowire in Solution. Chemistry Letters, 2005, 34, 1336-1337.	1.3	1
185	Mechanical fabrication of metal nano-contacts showing conductance quantization under electrochemical potential control. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 530-533.	2.7	7
186	Magnetic properties of ultrathin cobalt films on SiO2 substrates. Thin Solid Films, 2005, 493, 221-225.	1.8	13
187	Metal-induced gap states in epitaxial organic-insulator/metal interfaces. Physical Review B, 2005, 72, .	3.2	19
188	Electric-field-induced charge injection or exhaustion in organic thin film transistor. Physical Review B, 2005, 71 , .	3.2	80
189	Electronic properties of metal-induced gap states formed at alkali-halide/metal interfaces. Physical Review B, 2005, 71, .	3.2	13
190	Hydrogen-assisted stabilization of Ni nanowires in solution. Applied Physics Letters, 2005, 87, 043104.	3.3	44
191	Structural Control of Gold Atomic Wires by Changing Electrochemical Potential. Hyomen Kagaku, 2005, 26, 421-427.	0.0	0
192	Scanning Tunneling Microscopy and Spectroscopy Study of LiBr/Si(001) Heterostructure. Japanese Journal of Applied Physics, 2004, 43, L203-L205.	1.5	3
193	Polar surface engineering in ultrathin MgO(111) \hat{a} -Ag(111): Possibility of a metal-insulator transition and magnetism. Physical Review B, 2004, 69, .	3.2	43
194	One-dimensional ordered structure of \hat{l} ±-sexithienyl on Cu(110). Applied Physics Letters, 2004, 84, 3444-3446.	3.3	35
195	Molecular orientations and adsorption structures of $\hat{l}\pm$ -sexithienyl thin films grown on Ag (110) and Ag (111) surfaces. Surface Science, 2004, 559, 77-84.	1.9	39
196	Epitaxial growth and domain coalescence of sexithiophene induced by the steps on cleaved KBr(001). Journal of Crystal Growth, 2004, 265, 296-301.	1.5	20
197	Metal induced gap states at alkali halide/metal interface. Applied Surface Science, 2004, 237, 495-498.	6.1	3
198	Valence-band interorbital interaction at the Al–Sn interface observed by ultraviolet photoemission spectroscopy: implication for phase relations in metallic binary systems. Philosophical Magazine, 2004, 84, 1671-1682.	1.6	2

#	Article	IF	Citations
199	Metal-induced gap states at insulator/metal interfaces. E-Journal of Surface Science and Nanotechnology, 2004, 2, 191-199.	0.4	9
200	Visible light photoemission and negative electron affinity of single-crystalline CsCl thin films. Surface Science, 2003, 544, 220-226.	1.9	12
201	Electronic structure of alkali halide–metal interface: LiCl()/Cu(). Surface Science, 2003, 522, 84-89.	1.9	10
202	Atomic and electronic structure of CsBr film grown on LiF and KBr(). Surface Science, 2003, 523, 73-79.	1.9	7
203	Epitaxial growth of CoO films on semiconductor and metal substrates by constructing a complex heterostructure. Journal of Crystal Growth, 2003, 247, 110-118.	1.5	3
204	Accumulation and Depletion Layer Thicknesses in Organic Field Effect Transistors. Japanese Journal of Applied Physics, 2003, 42, L1408-L1410.	1.5	105
205	Temperature and thickness dependence of molecular orientation of \hat{l}_{\pm} -sexithienyl on Cu(111). Journal of Applied Physics, 2003, 94, 4866.	2.5	36
206	Metal-Induced Gap States at Well Defined Alkali-Halide/Metal Interfaces. Physical Review Letters, 2003, 90, 196803.	7.8	37
207	Electrical Properties of LiF/Ag(001) Heterostructure. Japanese Journal of Applied Physics, 2003, 42, 4713-4715.	1.5	2
208	Dynamic and Static Disorder of Alkali Halide Solid Solutions studied by Temperature-dependent Extended X-Ray-Absorption Fine Structure. Journal of the Physical Society of Japan, 2002, 71, 1076-1082.	1.6	0
209	Atomic and electronic structures of MgO/Ag() heterointerface. Surface Science, 2002, 512, 97-106.	1.9	45
210	Surface structures and thermal vibrations of Ni and Cu thin films studied by extended x-ray-absorption fine structure. Physical Review B, 2000, 61, 14020-14027.	3.2	29
211	Effects of anharmonicity of ionic bonds on the lattice distortion at the interface of alkali halide heterostructures. Surface Science, 2000, 470, 81-88.	1.9	12
212	Local structure of a trapped photoexcited state of a Fe-Co cyanide studied by x-ray-absorption fine-structure spectroscopy. Physical Review B, 1999, 60, 9340-9346.	3.2	72
213	Interface structure of alkali-halide heteroepitaxial films studied by x-ray-absorption fine structure. Physical Review B, 1999, 60, 16205-16210.	3.2	17
214	Adsorption structures of alkanethiols self-assembled monolayers on the Cu(100) surface studied by S-KEXAFS and C-KNEXAFS spectroscopies. Journal of Synchrotron Radiation, 1999, 6, 787-789.	2.4	15
215	Asymmetric surface structure of SO2 on $Pd(111)$ studied by total-reflection X-ray absorption fine structure spectroscopy. Chemical Physics Letters, 1999, 300, 645-650.	2.6	18
216	SO2 adsorption on thin Pd/Ni(111) films studied by X-ray absorption fine structure spectroscopy. Surface Science, 1999, 442, 141-148.	1.9	6

#	Article	IF	CITATION
217	Thiophene adsorption on Pd(111) and Pd(100) surfaces studied by total-reflection S K-edge X-ray absorption fine-structure spectroscopy. Surface Science, 1998, 414, 107-117.	1.9	29
218	Spin-crossover phase transition of a chain Fe(II) complex studied by x-ray-absorption fine-structure spectroscopy. Physical Review B, 1998, 58, 14238-14244.	3.2	47
219	Coverage dependence of surface structure and vibration of Cl/Cu(100) compared to Cl/Ni(100). Physical Review B, 1997, 56, 1561-1567.	3.2	17
220	Anisotropic Anharmonic Vibrations of the Surface S–Ni and Cl–Ni Bonds in c(2×2)S and Cl/Ni(100) Systems Studied by Molecular Dynamics. Journal of the Physical Society of Japan, 1997, 66, 1371-1377.	1.6	0