Vincent Burrus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/630982/publications.pdf Version: 2024-02-01

VINCENT RUDDUS

#	Article	IF	CITATIONS
1	PixR, a Novel Activator of Conjugative Transfer of IncX4 Resistance Plasmids, Mitigates the Fitness Cost of <i>mcr-1</i> Carriage in Escherichia coli. MBio, 2022, 13, e0320921.	1.8	16
2	A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying <i>mcr-1</i> -bearing Incl2 plasmids. Nucleic Acids Research, 2021, 49, 3981-3996.	6.5	34
3	Crucial role of <i>Salmonella</i> genomic island 1 master activator in the parasitism of IncC plasmids. Nucleic Acids Research, 2021, 49, 7807-7824.	6.5	9
4	Genomic islands targeting dusA in Vibrio species are distantly related to Salmonella Genomic Island 1 and mobilizable by IncC conjugative plasmids. PLoS Genetics, 2021, 17, e1009669.	1.5	8
5	Highâ€efficiency delivery of CRISPR as9 by engineered probiotics enables precise microbiome editing. Molecular Systems Biology, 2021, 17, e10335.	3.2	47
6	Editorial: Globally or Regionally Spread of Epidemic Plasmids Carrying Clinically Important Resistance Genes: Epidemiology, Molecular Mechanism, and Drivers. Frontiers in Microbiology, 2021, 12, 822802.	1.5	3
7	ICETh1 and ICETh2, two interdependent mobile genetic elements in Thermus thermophilus transjugation. Environmental Microbiology, 2020, 22, 158-169.	1.8	4
8	Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114. Communications Biology, 2020, 3, 523.	2.0	41
9	Replication of theÂSalmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss. PLoS Genetics, 2020, 16, e1008965.	1.5	21
10	Antibiotic Resistance in Vibrio cholerae: Mechanistic Insights from IncC Plasmid-Mediated Dissemination of a Novel Family of Genomic Islands Inserted at <i>trmE</i> . MSphere, 2020, 5, .	1.3	23
11	IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR–Cas during conjugation. Nucleic Acids Research, 2020, 48, 8815-8827.	6.5	33
12	Title is missing!. , 2020, 16, e1008965.		0
13	Title is missing!. , 2020, 16, e1008965.		0
14	Title is missing!. , 2020, 16, e1008965.		0
15	Title is missing!. , 2020, 16, e1008965.		Ο
16	Entry Exclusion of Conjugative Plasmids of the IncA, IncC, and Related Untyped Incompatibility Groups. Journal of Bacteriology, 2019, 201, .	1.0	31
17	Redefinition and Unification of the SXT/R391 Family of Integrative and Conjugative Elements. Applied and Environmental Microbiology, 2018, 84, .	1.4	35
18	Genome Sequence of a Canadian Vibrio parahaemolyticus Isolate with Unique Mobilizing Capacity. Genome Announcements, 2018, 6, .	0.8	1

VINCENT BURRUS

#	Article	IF	CITATIONS
19	Biofilm Formation Drives Transfer of the Conjugative Element ICE <i>Bs1</i> in <i>Bacillus subtilis</i> . MSphere, 2018, 3, .	1.3	38
20	Mechanisms of stabilization of integrative and conjugative elements. Current Opinion in Microbiology, 2017, 38, 44-50.	2.3	58
21	Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mobile Genetic Elements, 2017, 7, 1-6.	1.8	51
22	Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation. PLoS Genetics, 2017, 13, e1006705.	1.5	46
23	Identification of genetic and environmental factors stimulating excision from <scp><i>S</i></scp> <i>treptomyces scabiei</i> chromosome of the toxicogenic region responsible for pathogenicity. Molecular Plant Pathology, 2016, 17, 501-509.	2.0	23
24	Effect of organic matter on nitrogenase metal cofactors homeostasis in <scp><i>A</i></scp> <i>zotobacter vinelandii</i> under diazotrophic conditions. Environmental Microbiology Reports, 2016, 8, 76-84.	1.0	17
25	IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti. MBio, 2016, 7, .	1.8	57
26	Novel chromosome-encoded <i>erm</i> (47) determinant responsible for constitutive MLS _B resistance in <i>Helcococcus kunzii</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 3046-3049.	1.3	3
27	Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile. Journal of Bacteriology, 2016, 198, 565-577.	1.0	74
28	Biology of Three ICE Families: SXT/R391, ICEBs1, and ICESt1/ICESt3. , 2015, , 289-309.		1
29	The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids. Frontiers in Microbiology, 2015, 6, 837.	1.5	48
30	Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner. PLoS Genetics, 2015, 11, e1005298.	1.5	90
31	DNA Data Visualization (DDV): Software for Generating Web-Based Interfaces Supporting Navigation and Analysis of DNA Sequence Data of Entire Genomes. PLoS ONE, 2015, 10, e0143615.	1.1	10
32	Unraveling the regulatory network of IncA/C plasmid mobilization: When genomic islands hijack conjugative elements. Mobile Genetic Elements, 2015, 5, 34-38.	1.8	17
33	Transfer activation of SXT/R391 integrative and conjugative elements: unraveling the SetCD regulon. Nucleic Acids Research, 2015, 43, 2045-2056.	6.5	48
34	A diaminopimelic acid auxotrophic <i>Escherichia coli</i> donor provides improved counterselection following intergeneric conjugation with actinomycetes. Canadian Journal of Microbiology, 2015, 61, 565-574.	0.8	6
35	Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile. Current Genetics, 2015, 61, 497-502.	0.8	20
36	The dualistic nature of integrative and conjugative elements. Mobile Genetic Elements, 2015, 5, 98-102.	1.8	46

VINCENT BURRUS

#	Article	IF	CITATIONS
37	A λ Cro-Like Repressor Is Essential for the Induction of Conjugative Transfer of SXT/R391 Elements in Response to DNA Damage. Journal of Bacteriology, 2015, 197, 3822-3833.	1.0	23
38	Electrophoretic Mobility Shift Assay Using Radiolabeled DNA Probes. Methods in Molecular Biology, 2015, 1334, 1-15.	0.4	4
39	Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile. Journal of Bacteriology, 2015, 197, 819-832.	1.0	161
40	Development of pVCR94ΔX from Vibrio cholerae, a prototype for studying multidrug resistant IncA/C conjugative plasmids. Frontiers in Microbiology, 2014, 5, 44.	1.5	51
41	The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination. PLoS Genetics, 2014, 10, e1004714.	1.5	106
42	Biology of Three ICE Families: SXT/R391, ICE <i>Bs1</i> , and ICE <i>St1</i> /ICE <i>St3</i> . Microbiology Spectrum, 2014, 2, .	1.2	62
43	Comparative Analysis of Mobilizable Genomic Islands. Journal of Bacteriology, 2013, 195, 606-614.	1.0	37
44	DNA-Damaging Agents Induce the RecA-Independent Homologous Recombination Functions of Integrating Conjugative Elements of the SXT/R391 Family. Journal of Bacteriology, 2013, 195, 1991-2003.	1.0	34
45	Coagulation–flocculation pre-treatment of surface water used on dairy farms and evaluation of bacterial viability and gene transfer in treatment sludge. Water Quality Research Journal of Canada, 2013, 48, 111-120.	1.2	1
46	Dynamics of the SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by Integrating Conjugative Elements of the SXT/R391 Family. Journal of Bacteriology, 2012, 194, 5794-5802.	1.0	26
47	Diversity of integrating conjugative elements in actinobacteria. Mobile Genetic Elements, 2012, 2, 119-124.	1.8	35
48	ICEVchInd5 is prevalent in epidemic Vibrio cholerae O1 El Tor strains isolated in India. International Journal of Medical Microbiology, 2011, 301, 318-324.	1.5	27
49	Origin of Vibrio cholerae in Haiti. Lancet Infectious Diseases, The, 2011, 11, 262.	4.6	30
50	c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases. PLoS Genetics, 2011, 7, e1002039.	1.5	128
51	Significance of the SXT/R391 Family of Integrating Conjugative Elements in Vibrio cholerae. , 2011, , 161-184.		3
52	Uncovering the Prevalence and Diversity of Integrating Conjugative Elements in Actinobacteria. PLoS ONE, 2011, 6, e27846.	1.1	56
53	Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of <i>Vibrio</i> genomic islands. Molecular Microbiology, 2010, 78, 576-588.	1.2	99
54	Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to câ€diâ€GMP signalling in <i>Vibrio cholerae</i> . Environmental Microbiology, 2010, 12, 510-523.	1.8	75

VINCENT BURRUS

#	Article	IF	CITATIONS
55	Mobile Antibiotic Resistance Encoding Elements Promote Their Own Diversity. PLoS Genetics, 2009, 5, e1000775.	1.5	113
56	Comparative ICE Genomics: Insights into the Evolution of the SXT/R391 Family of ICEs. PLoS Genetics, 2009, 5, e1000786.	1.5	247
57	Identification of the Origin of Transfer (<i>oriT</i>) and a New Gene Required for Mobilization of the SXT/R391 Family of Integrating Conjugative Elements. Journal of Bacteriology, 2008, 190, 5328-5338.	1.0	57
58	Genomic and Functional Analysis of ICE <i>Pda</i> Spa1, a Fish-Pathogen-Derived SXT-Related Integrating Conjugative Element That Can Mobilize a Virulence Plasmid. Journal of Bacteriology, 2008, 190, 3353-3361.	1.0	58
59	The current ICE age: Biology and evolution of SXT-related integrating conjugative elements. Plasmid, 2006, 55, 173-183.	0.4	208
60	SXT-Related Integrating Conjugative Element in New World Vibrio cholerae. Applied and Environmental Microbiology, 2006, 72, 3054-3057.	1.4	61
61	Requirement for Vibrio cholerae Integration Host Factor in Conjugative DNA Transfer. Journal of Bacteriology, 2006, 188, 5704-5711.	1.0	31
62	Formation of SXT Tandem Arrays and SXT-R391 Hybrids. Journal of Bacteriology, 2004, 186, 2636-2645.	1.0	56
63	Evolution of genomic islands by deletion and tandem accretion by site-specific recombination: ICESt1-related elements from Streptococcus thermophilus. Microbiology (United Kingdom), 2004, 150, 759-774.	0.7	75
64	Shaping bacterial genomes with integrative and conjugative elements. Research in Microbiology, 2004, 155, 376-386.	1.0	402
65	Control of SXT Integration and Excision. Journal of Bacteriology, 2003, 185, 5045-5054.	1.0	105
66	The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid, 2002, 48, 77-97.	0.4	137
67	Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cellular and Molecular Life Sciences, 2002, 59, 2065-2070.	2.4	92
68	Conjugative transposons: the tip of the iceberg. Molecular Microbiology, 2002, 46, 601-610.	1.2	382
69	Characterization of a Novel Type II Restriction-Modification System, Sth 368I, Encoded by the Integrative Element ICE St1 of Streptococcus thermophilus CNRZ368. Applied and Environmental Microbiology, 2001, 67, 1522-1528.	1.4	57
70	Characterization and chimeric structure of a family of integrative and potentially conjugative elements from Streptococcus thermophilus. Dairy Science and Technology, 2001, 81, 57-64.	0.9	2
71	Characterization of a Novel Integrative Element, ICE St1 , in the Lactic Acid Bacterium Streptococcus thermophilus. Applied and Environmental Microbiology, 2000, 66, 1749-1753.	1.4	44