Ibrahim M El-Sherbiny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309685/publications.pdf Version: 2024-02-01

		126858	133188
128	4,305	33	59
papers	citations	h-index	g-index
131	131	131	6838
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science & Practice, 2013, 2013, 38.	0.3	604
2	Honey/Chitosan Nanofiber Wound Dressing Enriched with <i>Allium sativum</i> and <i>Cleome droserifolia</i> : Enhanced Antimicrobial and Wound Healing Activity. ACS Applied Materials & Interfaces, 2016, 8, 6379-6390.	4.0	254
3	Inhaled nano- and microparticles for drug delivery. Global Cardiology Science & Practice, 2015, 2015, 2.	0.3	144
4	Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate Polymers, 2012, 89, 236-244.	5.1	139
5	Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: Preparation and in-vitro assessment. Carbohydrate Polymers, 2010, 80, 1125-1136.	5.1	125
6	Controlled Release Pulmonary Administration of Curcumin Using Swellable Biocompatible Microparticles. Molecular Pharmaceutics, 2012, 9, 269-280.	2.3	112
7	Single-Dose Electrospun Nanoparticles-in-Nanofibers Wound Dressings with Enhanced Epithelialization, Collagen Deposition, and Granulation Properties. ACS Applied Materials & Interfaces, 2016, 8, 14453-14469.	4.0	104
8	New polylactic acid/ cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. International Journal of Biological Macromolecules, 2017, 105, 1148-1160.	3.6	93
9	Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) Self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. International Journal of Pharmaceutics, 2010, 395, 132-141.	2.6	88
10	New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. Journal of Advanced Research, 2021, 28, 51-62.	4.4	83
11	Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. International Journal of Biological Macromolecules, 2016, 92, 254-269.	3.6	81
12	Swellable microparticles as carriers for sustained pulmonary drug delivery. Journal of Pharmaceutical Sciences, 2010, 99, 2343-2356.	1.6	76
13	Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydrate Polymers, 2011, 83, 1345-1354.	5.1	74
14	Formulation Approaches to Short Interfering RNA and MicroRNA: Challenges and Implications. Journal of Pharmaceutical Sciences, 2012, 101, 4046-4066.	1.6	70
15	Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol-Assisted Method for Biomedical and Drug Delivery Applications. Journal of Nanomaterials, 2011, 2011, 1-13.	1.5	69
16	Alginate-based nanocomposites for efficient removal of heavy metal ions. International Journal of Biological Macromolecules, 2017, 102, 272-283.	3.6	67
17	Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers. Carbohydrate Polymers, 2021, 270, 118373.	5.1	63
18	Poly(ethylene glycol)–carboxymethyl chitosan-based pH-responsive hydrogels: photo-induced synthesis, characterization, swelling, and in vitro evaluation as potential drug carriers. Carbohydrate Research, 2010, 345, 2004-2012.	1.1	59

#	Article	IF	CITATIONS
19	The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers. Materials Science and Engineering C, 2016, 67, 276-284.	3.8	51
20	Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. International Journal of Biological Macromolecules, 2016, 93, 9-19.	3.6	51
21	Removal of methylene blue from aqueous solutions using polyaniline/graphene oxide or polyaniline/reduced graphene oxide composites. Environmental Technology (United Kingdom), 2020, 41, 2854-2862.	1.2	51
22	Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. Nanomedicine, 2017, 12, 387-402.	1.7	49
23	Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads. International Journal of Biological Macromolecules, 2019, 140, 682-696.	3.6	49
24	SARS-CoV-2-Impedimetric Biosensor: Virus-Imprinted Chips for Early and Rapid Diagnosis. ACS Sensors, 2021, 6, 4098-4107.	4.0	48
25	Design and <i>In Vitro</i> Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin. BioMed Research International, 2013, 2013, 1-9.	0.9	43
26	Sandwich-Like Nanofibrous Scaffolds for Bone Tissue Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 28610-28620.	4.0	42
27	Swellable Ciprofloxacin-Loaded Nano-in-Micro Hydrogel Particles for Local Lung Drug Delivery. AAPS PharmSciTech, 2014, 15, 1535-1544.	1.5	41
28	New core–shell hyperbranched chitosan-based nanoparticles as optical sensor for ammonia detection. International Journal of Biological Macromolecules, 2016, 86, 782-788.	3.6	39
29	Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine, 2017, 12, 1689-1711.	1.7	38
30	Urchin-like CuS nanostructures: simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight. Applied Nanoscience (Switzerland), 2020, 10, 2153-2164.	1.6	38
31	Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: <i>in vitro</i> , <i>ex vivo</i> and <i>in vivo</i> evaluation. Nanomedicine, 2019, 14, 33-55.	1.7	37
32	A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine, 2016, 11, 2581-2602.	1.7	36
33	Development of core-shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line. European Journal of Pharmaceutical Sciences, 2018, 118, 103-112.	1.9	36
34	Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract. Carbohydrate Polymers, 2021, 256, 117498.	5.1	35
35	Exploring the physicochemical and antimicrobial properties of gold-chitosan hybrid nanoparticles composed of varying chitosan amounts. International Journal of Biological Macromolecules, 2020, 162, 1760-1769.	3.6	33
36	<p>Dual-Ligand Functionalized Core-Shell Chitosan-Based Nanocarrier for Hepatocellular Carcinoma-Targeted Drug Delivery</p> . International Journal of Nanomedicine, 2020, Volume 15, 821-837.	3.3	32

#	Article	IF	CITATIONS
37	Sensing of bacterial cell viability using nanostructured bioelectrochemical system: rGO-hyperbranched chitosan nanocomposite as a novel microbial sensor platform. Sensors and Actuators B: Chemical, 2017, 252, 191-200.	4.0	30
38	Designing and fabrication of new VIP biosensor for the rapid and selective detection of foot-and-mouth disease virus (FMDV). Biosensors and Bioelectronics, 2019, 141, 111467.	5.3	30
39	Swellable Hydrogel Particles for Controlled Release Pulmonary Administration Using Propellant-Driven Metered Dose Inhalers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2011, 24, 25-34.	0.7	29
40	Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity. Journal of Nanostructure in Chemistry, 2013, 3, 1.	5.3	28
41	New calcareous soil–alginate composites for efficient uptake of Fe(III), Mn(II) and As(V) from water. Carbohydrate Polymers, 2013, 96, 450-459.	5.1	28
42	Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of doxorubicin to brain. Nanomedicine, 2017, 12, 2737-2761.	1.7	28
43	Significantly enhanced electroactive β phase crystallization and UV-shielding properties in PVDF nanocomposites flexible films through loading of ATO nanoparticles: Synthesis and formation mechanism. European Polymer Journal, 2017, 90, 195-208.	2.6	26
44	Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu ₂ O. Journal Physics D: Applied Physics, 2015, 48, 175502.	1.3	25
45	Photo-induced green synthesis and antimicrobial efficacy of poly (É>-caprolactone)/curcumin/grape leaf extract-silver hybrid nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2016, 160, 355-363.	1.7	25
46	Silymarin nanoformulation as potential anticancer agent in experimental Ehrlich ascites carcinoma-bearing animals. Nanomedicine, 2018, 13, 1865-1858.	1.7	25
47	New alginate-based interpenetrating polymer networks for water treatment: A response surface methodology based optimization study. International Journal of Biological Macromolecules, 2020, 155, 772-785.	3.6	25
48	Electrospun polymer-based nanofiber scaffolds for skin regeneration. Journal of Drug Delivery Science and Technology, 2021, 64, 102623.	1.4	25
49	Novel doxorubicin / folate-targeted trans-ferulic acid-loaded PLGA nanoparticles combination: In-vivo superiority over standard chemotherapeutic regimen for breast cancer treatment. Biomedicine and Pharmacotherapy, 2022, 145, 112376.	2.5	25
50	Manganese dioxide-core–shell hyperbranched chitosan (MnO ₂ –HBCs) nano-structured screen printed electrode for enzymatic glucose biosensors. RSC Advances, 2016, 6, 109185-109191.	1.7	24
51	Polyurethane-doped platinum nanoparticles modified carbon paste electrode for the sensitive and selective voltammetric determination of free copper ions in biological samples. Microchemical Journal, 2020, 155, 104765.	2.3	24
52	Edible alginate/chitosan-based nanocomposite microspheres as delivery vehicles of omega-3 rich oils. Carbohydrate Polymers, 2020, 239, 116201.	5.1	24
53	Tissue plasminogen activator-based clot busting: Controlled delivery approaches. Global Cardiology Science & Practice, 2014, 2014, 46.	0.3	23
54	Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. International Journal of Biological Macromolecules, 2021, 193, 2029-2037.	3.6	23

#	Article	IF	CITATIONS
55	Photo-induced synthesis, characterization and swelling behavior of poly(2-hydroxyethyl) Tj ETQq1 1 0.784314 rg	BT_/Overlc	ock 10 Tf 500
56	Nanoformulated ellagic acid ameliorates pentylenetetrazol-induced experimental epileptic seizures by modulating oxidative stress, inflammatory cytokines and apoptosis in the brains of male mice. Metabolic Brain Disease, 2020, 35, 385-399.	1.4	22
57	Chitosan/Gold Hybrid Nanoparticles Enriched Electrospun PVA Nanofibrous Mats for the Topical Delivery of Punica granatum L. Extract: Synthesis, Characterization, Biocompatibility and Antibacterial Properties. International Journal of Nanomedicine, 2021, Volume 16, 5133-5151.	3.3	22
58	A Review on Bionanocomposites Based on Chitosan and Its Derivatives for Biomedical Applications. Advanced Structured Materials, 2015, , 173-208.	0.3	20
59	A New NO-Releasing Nanoformulation for the Treatment of Pulmonary Arterial Hypertension. Journal of Cardiovascular Translational Research, 2016, 9, 162-164.	1.1	20
60	Updates on smart polymeric carrier systems for protein delivery. Drug Development and Industrial Pharmacy, 2017, 43, 1567-1583.	0.9	20
61	lonotropically cross-linked pH-sensitive IPN hydrogel matrices as potential carriers for intestine-specific oral delivery of protein drugs. Drug Development and Industrial Pharmacy, 2011, 37, 121-130.	0.9	19
62	Fast technique for the purification of as-prepared graphene oxide suspension. Diamond and Related Materials, 2018, 86, 20-28.	1.8	19
63	Activation of polymeric nanoparticle intracellular targeting overcomes chemodrug resistance in human primary patient breast cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 8153-8164.	3.3	19
64	Hybrid nanocarrier system for guiding and augmenting simvastatin cytotoxic activity against prostate cancer. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 641-650.	1.9	19
65	Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine, 2019, 14, 2487-2514.	1.7	19
66	New sensing platform of poly(ester-urethane)urea doped with gold nanoparticles for rapid detection of mercury ions in fish tissue. RSC Advances, 2021, 11, 31845-31854.	1.7	19
67	High selectivity detection of FMDV- SAT-2 using a newly-developed electrochemical nanosensors. Biosensors and Bioelectronics, 2021, 191, 113435.	5.3	19
68	Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment. Scientific Reports, 2021, 11, 19808.	1.6	19
69	Enhanced cellular uptake and gene silencing activity of siRNA molecules mediated by chitosan-derivative nanocomplexes. International Journal of Pharmaceutics, 2014, 473, 579-590.	2.6	18
70	Novel Nano-Therapeutic Approach Actively Targets Human Ovarian Cancer Stem Cells after Xenograft into Nude Mice. International Journal of Molecular Sciences, 2017, 18, 813.	1.8	18
71	Facile development, characterization, and optimization of new metformin-loaded nanocarrier system for efficient colon cancer adjunct therapy. Drug Development and Industrial Pharmacy, 2018, 44, 1158-1170.	0.9	18
72	Preparation and Physicochemical Characterization of New Nanocomposites Based on β-Type Chitosan and Nano-Hydroxyapatite as Potential Bone Substitute Materials. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 213-220.	1.8	17

#	Article	IF	CITATIONS
73	Dual Spinneret Electrospun Polyurethane/PVA-Gelatin Nanofibrous Scaffolds Containing Cinnamon Essential Oil and Nanoceria for Chronic Diabetic Wound Healing: Preparation, Physicochemical Characterization and In-Vitro Evaluation. Molecules, 2022, 27, 2146.	1.7	17
74	Online-monitoring of biofilm formation using nanostructured electrode surfaces. Materials Science and Engineering C, 2019, 100, 178-185.	3.8	16
75	Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	15
76	Niclosamide-loaded polymeric micelles ameliorate hepatocellular carcinoma in vivo through targeting Wnt and Notch pathways. Life Sciences, 2020, 261, 118458.	2.0	15
77	Overcoming Lung Clearance Mechanisms for Controlled Release Drug Delivery. , 2011, , 101-126.		14
78	New repurposed rolapitant in nanovesicular systems for lung cancer treatment: Development, in-vitro assessment and in-vivo biodistribution study. European Journal of Pharmaceutical Sciences, 2022, 171, 106119.	1.9	14
79	New trimethyl chitosan-based composite nanoparticles as promising antibacterial agents. Drug Development and Industrial Pharmacy, 2016, 42, 720-729.	0.9	13
80	Potential anticancer activity and mechanism of action of nanoformulated curcumin in experimental Ehrlich ascites carcinoma-bearing animals. Nanomedicine, 2019, 14, 553-573.	1.7	13
81	Development of a silk fibroin-based multitask aerosolized nanopowder formula for efficient wound healing. International Journal of Biological Macromolecules, 2021, 182, 413-424.	3.6	13
82	Antitumor activity and antioxidant role of a novel water-soluble carboxymethyl chitosan-based copolymer. Drug Development and Industrial Pharmacy, 2011, 37, 1481-1490.	0.9	12
83	Improving the Functional Activities of Curcumin Using Milk Proteins as Nanocarriers. Foods, 2020, 9, 986.	1.9	12
84	Nanosized biligated metal–organic framework systems for enhanced cellular and mitochondrial sequential targeting of hepatic carcinoma. Biomaterials Science, 2021, 9, 6609-6622.	2.6	12
85	Voltammetric determination of <i>Salmonella typhimurium</i> in minced beef meat using a chip-based imprinted sensor. RSC Advances, 2022, 12, 3445-3453.	1.7	12
86	A new modification for improving shear bond strength and other mechanical properties of conventional glass-ionomer restorative materials. Journal of Adhesive Dentistry, 2014, 16, 41-7.	0.3	12
87	Preparation and nanoformulation of new quinolone scaffold-based anticancer agents: Enhancing solubility for better cellular delivery. European Journal of Pharmaceutical Sciences, 2017, 105, 203-211.	1.9	11
88	Multifunctional prosthetic polyester-based hybrid mesh for repairing of abdominal wall hernias and defects. Carbohydrate Polymers, 2019, 223, 115027.	5.1	11
89	Phenytoin/sildenafil loaded poly(lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration. International Journal of Biological Macromolecules, 2019, 136, 154-164.	3.6	11
90	Matrix-dispersed PEI-coated SPIONs for fast and efficient removal of anionic dyes from textile wastewater samples: Applications to triphenylmethanes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119301.	2.0	11

IBRAHIM M EL-SHERBINY

#	Article	IF	CITATIONS
91	Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 9-37.	2.0	11
92	Janus Nano- and Microparticles as Smart Drug Delivery Systems. Current Pharmaceutical Biotechnology, 2016, 17, 673-682.	0.9	11
93	Core-shell hyperbranched chitosan nanostructure as a novel electrode modifier. International Journal of Biological Macromolecules, 2016, 93, 543-546.	3.6	10
94	Nitric Oxide Releasing Hydrogel Nanoparticles Decreases Epithelial Cell Injuries Associated With Airway Reopening. Frontiers in Bioengineering and Biotechnology, 2020, 8, 579788.	2.0	10
95	Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing. Polymers, 2021, 13, 3630.	2.0	10
96	User-friendly lab-on-paper optical sensor for the rapid detection of bacterial spoilage in packaged meat products. RSC Advances, 2021, 11, 35165-35173.	1.7	10
97	A Novel Aerosol Method for the Production of Hydrogel Particles. Journal of Nanomaterials, 2011, 2011, 1-10.	1.5	9
98	Bilayer sandwich-like membranes of metal organic frameworks-electrospun polymeric nanofibers via SiO 2 nanoparticles seeding. Materials Today Communications, 2017, 12, 119-124.	0.9	9
99	Functionalized Poly(N-isopropylacrylamide)-Based Microgels in Tumor Targeting and Drug Delivery. Gels, 2021, 7, 203.	2.1	9
100	Preparation, characterization, structure, and dynamics of carboxymethyl chitosan grafted with acrylic acid sodium salt. Journal of Applied Polymer Science, 2010, 118, 2134-2145.	1.3	8
101	Fortified hyperbranched PEGylated chitosan-based nano-in-micro composites for treatment of multiple bacterial infections. International Journal of Biological Macromolecules, 2020, 148, 1201-1210.	3.6	8
102	Switching indication of PEGylated lipid nanocapsules-loaded with rolapitant and deferasirox against breast cancer: Enhanced in-vitro and in-vivo cytotoxicity. Life Sciences, 2022, 305, 120731.	2.0	8
103	Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering. Advanced Structured Materials, 2015, , 399-431.	0.3	7
104	Green Synthesis of Chitosan-Silver/Gold Hybrid Nanoparticles for Biomedical Applications. Methods in Molecular Biology, 2019, 2000, 79-84.	0.4	7
105	Mitotropic triphenylphosphonium doxorubicin-loaded core-shell nanoparticles for cellular and mitochondrial sequential targeting of breast cancer. International Journal of Pharmaceutics, 2021, 606, 120936.	2.6	7
106	Efficacy of biocompatible trilayers nanofibrous scaffold with/without allogeneic adipose-derived stem cells on class II furcation defects of dogs' model. Clinical Oral Investigations, 2022, 26, 2537-2553.	1.4	6
107	Anticarcinogenic Effects of Capsaicin-Loaded Nanoparticles on In vitro Hepatocellular Carcinoma. Current Chemical Biology, 2021, 15, 188-201.	0.2	5
108	Ticagrelor. Profiles of Drug Substances, Excipients and Related Methodology, 2022, 47, 91-111.	3.5	5

IBRAHIM M EL-SHERBINY

#	Article	IF	CITATIONS
109	Wet Electrospun Nanofibers-Fortified Gelatin/Alginate-Based Nanocomposite as a Single-Dose Biomimicking Skin Substitute. ACS Applied Bio Materials, 2022, 5, 3678-3694.	2.3	5
110	Evaluation of the osteogenic potential of rat adipose-derived stem cells with different polycaprolactone/alginate-based nanofibrous scaffolds: an in vitro study. Stem Cell Investigation, 2020, 7, 14-14.	1.3	4
111	Antiviral Activity of Curcumin Loaded Milk Proteins Nanoparticles on Potato Virus Y. Pakistan Journal of Biological Sciences, 2019, 22, 614-622.	0.2	4
112	(Rose Bengal)/(Eosin Yellow)-Gold-Polypyrrole Hybrids: A Design for Dual Photo-Active Nano-System with Ultra-High Loading Capacity. Drug Design, Development and Therapy, 2021, Volume 15, 5011-5023.	2.0	4
113	Development and Evaluation of Core-Shell Nanocarrier System for Enhancing the Cytotoxicity of Doxorubicin/Metformin Combination Against Breast Cancer Cell Line. Journal of Pharmaceutical Sciences, 2022, 111, 2581-2591.	1.6	4
114	Exploring the influence of particle shape and air velocity on the flowability in the respiratory tract: a computational fluid dynamics approach. Drug Development and Industrial Pharmacy, 2019, 45, 1149-1156.	0.9	3
115	Nanomicelles-in-coaxial nanofibers with exit channels as a transdermal delivery platform for smoking cessation. Journal of Materials Chemistry B, 0, , .	2.9	3
116	Nanoformulation and antimicrobial evaluation of newly synthesized thiouracil derivatives. Drug Development and Industrial Pharmacy, 2016, 42, 1094-1109.	0.9	2
117	Boosting the mechanical strength and solubility-enhancement properties of hydroxypropyl-β-cyclodextrin nanofibrous films. Drug Development and Industrial Pharmacy, 2021, , 1-11.	0.9	2
118	Potential of nanotechnology in nutraceuticals delivery for the prevention and treatment of cancer. , 2016, , 117-152.		1
119	Methods of Fabrication of Chitosan-Based Nano-in-Microparticles (NMPs). Methods in Molecular Biology, 2019, 2000, 85-91.	0.4	1
120	A better understanding of the polymeric irradiation using physico-electrochemical characteristics. Radiation Effects and Defects in Solids, 2021, 176, 1021-1037.	0.4	1
121	Drag-minimizing spore/pollen-mimicking microparticles for enhanced pulmonary drug delivery: CFD and experimental studies. Journal of Drug Delivery Science and Technology, 2022, 67, 102960.	1.4	1
122	Activation of Polymeric Nanoparticle Intracellular Targeting Overcomes Chemodrug Resistance in Human Primary Patient Breast Cancer Cells [Retraction]. International Journal of Nanomedicine, 0, Volume 17, 2555-2556.	3.3	1
123	Carbetapentane citrate. Profiles of Drug Substances, Excipients and Related Methodology, 2020, 45, 41-53.	3.5	Ο
124	Biopolymeric-Inorganic Composites for Drug Delivery Applications. Advances in Material Research and Technology, 2022, , 271-298.	0.3	0
125	Hydrogels for Pulmonary Drug Delivery. , 2017, , 327-352.		0
126	Passive and Active Targeting of Brain Tumors. Neuromethods, 2021, , 63-78.	0.2	0

#	Article	IF	CITATIONS
127	Applications of chitosan in orthopedics and dentistry. , 2022, , 295-328.		0
128	Nanofibrous Scaffolds for the Management of Periodontal Diseases. Advances in Polymer Science, 2022, , .	0.4	0