
Catherine E Grueber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 2011, 24, 699-711.	0.8	1,772
2	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	1.9	285
3	Heterogeneity in ecological and evolutionary metaâ€analyses: its magnitude and implications. Ecology, 2016, 97, 3293-3299.	1.5	180
4	Adaptation and conservation insights from the koala genome. Nature Genetics, 2018, 50, 1102-1111.	9.4	163
5	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	2.2	96
6	Episodic Positive Selection in the Evolution of Avian Toll-Like Receptor Innate Immunity Genes. PLoS ONE, 2014, 9, e89632.	1.1	86
7	Genetic drift outweighs natural selection at tollâ€like receptor (<i><scp>TLR</scp></i>) immunity loci in a reâ€introduced population of a threatened species. Molecular Ecology, 2013, 22, 4470-4482.	2.0	76
8	Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (<scp>EBVs</scp>) for genetic composition. Biological Reviews, 2022, 97, 1511-1538.	4.7	73
9	Inbreeding Depression Accumulation across Lifeâ€History Stages of the Endangered Takahe. Conservation Biology, 2010, 24, 1617-1625.	2.4	67
10	Heterozygosity–fitness correlations and their relevance to studies on inbreeding depression in threatened species. Molecular Ecology, 2008, 17, 3978-3984.	2.0	64
11	Variation at Innate Immunity Toll-Like Receptor Genes in a Bottlenecked Population of a New Zealand Robin. PLoS ONE, 2012, 7, e45011.	1.1	62
12	SEVERE INBREEDING DEPRESSION AND NO EVIDENCE OF PURGING IN AN EXTREMELY INBRED WILD SPECIES-THE CHATHAM ISLAND BLACK ROBIN. Evolution; International Journal of Organic Evolution, 2014, 68, 987-995.	1.1	59
13	Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. Journal of Virology, 2019, 93, .	1.5	56
14	A demonstration of conservation genomics for threatened species management. Molecular Ecology Resources, 2020, 20, 1526-1541.	2.2	54
15	Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (<i><scp>S</scp>arcophilus harrisii</i>). Molecular Ecology, 2015, 24, 3860-3872.	2.0	51
16	The imprecision of heterozygosity-fitness correlations hinders the detection of inbreeding and inbreeding depression in a threatened species. Molecular Ecology, 2011, 20, 67-79.	2.0	48
17	From reference genomes to population genomics: comparing three reference-aligned reduced-representation sequencing pipelines in two wildlife species. BMC Genomics, 2019, 20, 453.	1.2	48
18	Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild. Scientific Reports, 2017, 7, 2161.	1.6	46

#	Article	IF	CITATIONS
19	Quantifying and managing the loss of genetic variation in a free-ranging population of takahe through the use of pedigrees. Conservation Genetics, 2008, 9, 645-651.	0.8	43
20	Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conservation Genetics, 2015, 16, 595-611.	0.8	42
21	Looking like the locals - gut microbiome changes post-release in an endangered species. Animal Microbiome, 2019, 1, 8.	1.5	40
22	Founder relationships and conservation management: empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Animal Conservation, 2019, 22, 348-361.	1.5	40
23	A meta-analysis of birth-origin effects on reproduction in diverse captive environments. Nature Communications, 2018, 9, 1055.	5.8	36
24	"Devil Tools & Tech― A Synergy of Conservation Research and Management Practice. Conservation Letters, 2017, 10, 133-138.	2.8	34
25	No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding. Scientific Reports, 2017, 7, 1830.	1.6	33
26	Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics, 2015, 16, 791.	1.2	32
27	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	1.9	32
28	Simulating Retention of Rare Alleles in Small Populations to Assess Management Options for Species with Different Life Histories. Conservation Biology, 2013, 27, 335-344.	2.4	31
29	<scp>A</scp> llele <scp>R</scp> etain: a program to assess management options for conserving allelic diversity in small, isolated populations. Molecular Ecology Resources, 2012, 12, 1161-1167.	2.2	29
30	Macronutritional consequences of food generalism in an invasive mammal, the wild boar. Mammalian Biology, 2016, 81, 523-526.	0.8	28
31	Complex problems need detailed solutions: Harnessing multiple data types to inform genetic management in the wild. Evolutionary Applications, 2019, 12, 280-291.	1.5	28
32	Offspring survival changes over generations of captive breeding. Nature Communications, 2021, 12, 3045.	5.8	28
33	Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conservation Genetics, 2018, 19, 439-450.	0.8	27
34	Selection on MHC class II supertypes in the New Zealand endemic Hochstetter's frog. BMC Evolutionary Biology, 2015, 15, 63.	3.2	26
35	Genetic impacts of conservation management actions in a critically endangered parrot species. Conservation Genetics, 2020, 21, 869-877.	0.8	26
36	Low genetic diversity and small population size of Takahe <i>Porphyrio hochstetteri</i> on European arrival in New Zealand. Ibis, 2011, 153, 384-394.	1.0	25

#	Article	IF	CITATIONS
37	Unexpected positive and negative effects of continuing inbreeding in one of the world's most inbred wild animals. Evolution; International Journal of Organic Evolution, 2016, 70, 154-166.	1.1	25
38	Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species. Journal of Heredity, 2017, 108, 488-495.	1.0	25
39	Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Molecular Ecology Resources, 2019, 19, 659-671.	2.2	25
40	Mixing genetically differentiated populations successfully boosts diversity of an endangered carnivore. Animal Conservation, 2020, 23, 700-712.	1.5	23
41	Genomic insights into a contagious cancer in Tasmanian devils. Trends in Genetics, 2015, 31, 528-535.	2.9	22
42	Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity. Immunogenetics, 2013, 65, 619-633.	1.2	21
43	Comparative genomics for biodiversity conservation. Computational and Structural Biotechnology Journal, 2015, 13, 370-375.	1.9	21
44	The effects of group versus intensive housing on the retention of genetic diversity in insurance populations. BMC Zoology, 2018, 3, .	0.3	21
45	Impact of reduced-representation sequencing protocols on detecting population structure in a threatened marsupial. Molecular Biology Reports, 2019, 46, 5575-5580.	1.0	19
46	Primers for amplification of innate immunity toll-like receptor loci in threatened birds of the Apterygiformes, Gruiformes, Psittaciformes and Passeriformes. Conservation Genetics Resources, 2013, 5, 1043-1047.	0.4	18
47	High blood lead concentrations in captive Tasmanian devils (<scp><i>Sarcophilus harrisii</i></scp>): a threat to the conservation of the species?. Australian Veterinary Journal, 2018, 96, 442-449.	0.5	18
48	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	0.8	18
49	The Coalition for Conservation Genetics: Working across organizations to build capacity and achieve change in policy and practice. Conservation Science and Practice, 2022, 4, .	0.9	17
50	Preserving the demographic and genetic integrity of a single source population during multiple translocations. Biological Conservation, 2020, 241, 108318.	1.9	16
51	Impacts of early viability selection on management of inbreeding and genetic diversity in conservation. Molecular Ecology, 2015, 24, 1645-1653.	2.0	15
52	A Tasmanian devil breeding program to support wild recovery. Reproduction, Fertility and Development, 2019, 31, 1296.	0.1	15
53	Isolation and characterization of microsatellite loci from the endangered New Zealand takahe (Gruiformes; Rallidae; <i>Porphyrio hochstetteri</i>). Molecular Ecology Resources, 2008, 8, 884-886.	2.2	14
54	Differential patterns of diversity at microsatellite, MHC, and TLR loci in bottlenecked South Island		14

saddleback populations. , 2017, 41, .

#	Article	IF	CITATIONS
55	Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity. Molecular Ecology, 2017, 26, 2660-2673.	2.0	13
56	Are any populations 'safe'? Unexpected reproductive decline in a population of Tasmanian devils free of devil facial tumour disease. Wildlife Research, 2018, 45, 31.	0.7	13
57	Understanding the evolution of viviparity using intraspecific variation in reproductive mode and transitional forms of pregnancy. Biological Reviews, 2022, 97, 1179-1192.	4.7	13
58	Assessing evolutionary processes over time in a conservation breeding program: a combined approach using molecular data, simulations and pedigree analysis. Biodiversity and Conservation, 2021, 30, 1011-1029.	1.2	12
59	Low innate immune-gene diversity in the critically endangered orange-bellied parrot (<i>Neophema) Tj ETQq1</i>	1 0.784314	ŀrg₿Ţ /Overloc
60	Intergenerational effects of nutrition on immunity: a systematic review and metaâ€analysis. Biological Reviews, 2018, 93, 1108-1124.	4.7	9
61	Comparison of beak and feather disease virus prevalence and immunity-associated genetic diversity over time in an island population of red-crowned parakeets. Archives of Virology, 2016, 161, 811-820.	0.9	8
62	A case for genetic parentage assignment in captive group housing. Conservation Genetics, 2019, 20, 1187-1193.	0.8	8
63	Reducing the Extinction Risk of Populations Threatened by Infectious Diseases. Diversity, 2021, 13, 63.	0.7	8
64	Parallel Tagged Next-Generation Sequencing on Pooled Samples – A New Approach for Population Genetics in Ecology and Conservation. PLoS ONE, 2013, 8, e61471.	1.1	7
65	Landscape-level field data reveal broad-scale effects of a fatal, transmissible cancer on population ecology of the Tasmanian devil. Mammalian Biology, 2018, 91, 41-45.	0.8	7
66	MHC-associated Baylisascaris schroederi load informs the giant panda reintroduction program. International Journal for Parasitology: Parasites and Wildlife, 2020, 12, 113-120.	0.6	7
67	Moving from trends to benchmarks by using regression tree analysis to find inbreeding thresholds in a critically endangered bird. Conservation Biology, 2021, 35, 1278-1287.	2.4	7
68	Improved highâ€throughput MHC typing for nonâ€model species using longâ€read sequencing. Molecular Ecology Resources, 2022, 22, 862-876.	2.2	7
69	Disentangling the mechanisms of mate choice in a captive koala population. PeerJ, 2018, 6, e5438.	0.9	6
70	MHC-associated mate choice under competitive conditions in captive versus wild Tasmanian devils. Behavioral Ecology, 2019, 30, 1196-1204.	1.0	5
71	Deciphering genetic mate choice: Not so simple in groupâ€housed conservation breeding programs. Evolutionary Applications, 2020, 13, 2179-2189.	1.5	5
72	Investigating inbreeding in a free-ranging, captive population of an Australian marsupial. Conservation Genetics, 2020, 21, 665-675.	0.8	5

#	Article	IF	CITATIONS
73	Inbreeding depression in one of the last DFTD-free wild populations of Tasmanian devils. PeerJ, 2020, 8, e9220.	0.9	5
74	Response to Britt et al. 2018 "The importance of non-academic co-authors in bridging the conservation genetics gap―Biological Conservation 218, 118–123. Biological Conservation, 2018, 222, 287-288.	1.9	4
75	Assessment of the dunnocks' introduction to New Zealand using innate immune-gene diversity. Evolutionary Ecology, 2020, 34, 803-820.	0.5	4
76	Characterization of reproductive gene diversity in the endangered Tasmanian devil. Molecular Ecology Resources, 2021, 21, 721-732.	2.2	4
77	Using genomics to fight extinction. Science, 2022, 376, 574-575.	6.0	4
78	DNA metabarcoding reveals a broad dietary range for Tasmanian devils introduced to a naive ecosystem. Ecology and Evolution, 2022, 12, .	0.8	4
79	Population demography and heterozygosity–fitness correlations in natural guppy populations: An examination using sexually selected fitness traits. Molecular Ecology, 2017, 26, 4631-4643.	2.0	3
80	Making the best of a bad situation: genetic rescue in the absence of an ideal source population. Animal Conservation, 2017, 20, 14-15.	1.5	3
81	Exploiting genomic synteny in Felidae: cross-species genome alignments and SNV discovery can aid conservation management. BMC Genomics, 2021, 22, 601.	1.2	3
82	First evidence of deviation from Mendelian proportions in a conservation programme. Molecular Ecology, 2021, 30, 3703-3715.	2.0	2
83	How much is enough? Sampling intensity influences estimates of reproductive variance in an introduced population. Ecological Applications, 2021, , e02462.	1.8	2
84	Evolutionary genetics of translocated island populations of birds: data and opportunities. Emu, 2021, 121, 136-146.	0.2	1
85	Using phylogenetics to explore interspecies genetic rescue options for a critically endangered parrot. Conservation Science and Practice, 2021, 3, e483.	0.9	1
86	Functional Diversity within Gut Microbiomes: Implications for Conserving Biodiversity. Conservation, 2021, 1, 311-326.	0.8	1
87	Urban restoration of common species: population genetics of reintroduced native bush rats <i>Rattus fuscipes</i> in Sydney, Australia. Animal Conservation, 2022, 25, 825-836.	1.5	1
88	Devil women. Pacific Conservation Biology, 2018, 24, 271.	0.5	0
89	Genomics for conservation: a case study of behavioral genes in the Tasmanian devil. Conservation Genetics, 2021, 22, 499-512.	0.8	0
90	Genetic analysis of scat samples to inform conservation of the Tasmanian devil. Australian Zoologist, 2020, 40, 492-504.	0.6	0