
Lucimara de la Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid polymer/lipid vesicle synthesis: Association between cationic liposomes and lipoplexes with chondroitin sulfate. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112233.	5.0	3
2	Double T-junction microfluidic and conventional dripping systems for Bacillus subtilis immobilization in calcium alginate microparticles for lipase production. Enzyme and Microbial Technology, 2022, 154, 109976.	3.2	1
3	Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics, 2022, 14, 141.	4.5	35
4	Layer-by-Layer Biomimetic Microgels for 3D Cell Culture and Nonviral Gene Delivery. Biomacromolecules, 2022, 23, 1545-1556.	5.4	7
5	Trends in hydrogel-based encapsulation technologies for advanced cell therapies applied to limb ischemia. Materials Today Bio, 2022, 13, 100221.	5.5	3
6	One-step Production of Sterically Stabilized Anionic Nanoliposome Using Microfluidic Device. Journal of Oleo Science, 2022, 71, 515-522.	1.4	0
7	Elastic liposomes as transcutaneous DNA vaccine vectors. , 2022, , 103-127.		0
8	Droplet microfluidics for double lipase immobilisation using TiO2 and alginate microbeads. Journal of Industrial and Engineering Chemistry, 2022, 110, 576-586.	5.8	3
9	Enhancement of the vorticity based on side feeding in a microdevice. Microfluidics and Nanofluidics, 2022, 26, 1.	2.2	0
10	Methyl Oleate Synthesis by TiO ₂ Photocatalytic Esterification of Oleic Acid: Optimisation by Response Surface Quadratic Methodology, Reaction Kinetics and Thermodynamics. ChemPhotoChem, 2022, 6, .	3.0	9
11	The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112476.	5.0	3
12	Freeze-Dried Microfluidic Monodisperse Microbubbles as a New Generation of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2022, , .	1.5	2
13	Hybrid microgels produced via droplet microfluidics for sustainable delivery of hydrophobic and hydrophilic model nanocarriers. Materials Science and Engineering C, 2021, 118, 111467.	7.3	15
14	Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. Journal of Materials Chemistry B, 2021, 9, 1208-1237.	5.8	30
15	3D micromixer for nanoliposome synthesis: a promising advance in high mass productivity. Lab on A Chip, 2021, 21, 2971-2985.	6.0	17
16	Microfluidic encapsulation of nanoparticles in alginate microgels gelled via competitive ligand exchange crosslinking. Biopolymers, 2021, 112, e23432.	2.4	2
17	A modular, reversible sealing, and reusable microfluidic device for drug screening. Analytica Chimica Acta, 2021, 1185, 339068.	5.4	6
18	Bulk and Microfluidic Synthesis of Stealth and Cationic Liposomes for Applications. Methods in Molecular Biology, 2021, 2197, 253-269.	0.9	3

#	Article	IF	CITATIONS
19	High-throughput conventional and stealth cationic liposome synthesis using a chaotic advection-based microfluidic device combined with a centrifugal vacuum concentrator. Chemical Engineering Journal, 2020, 382, 122821.	12.7	16
20	Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem. Frontiers in Molecular Biosciences, 2020, 7, 558982.	3.5	9
21	Perfusion Microfermentor Integrated into a Fiber Optic Quasi-Elastic Light Scattering Sensor for Fast Screening of Microbial Growth Parameters. Sensors, 2019, 19, 2493.	3.8	5
22	Ionic strength for tailoring the synthesis of monomodal stealth cationic liposomes in microfluidic devices. Colloids and Surfaces B: Biointerfaces, 2019, 179, 233-241.	5.0	12
23	Single-step microfluidic production of W/O/W double emulsions as templates for β-carotene-loaded giant liposomes formation. Chemical Engineering Journal, 2019, 366, 27-32.	12.7	56
24	Online Monitoring of Cell Growth on PDMS-PDMS Reversible Microfluidic Bioreactor Integrated to Optical Fiber Sensor. , 2019, , .		2
25	Bacillus subtilis immobilization in alginate microfluidic-based microparticles aiming to improve lipase productivity. Biochemical Engineering Journal, 2019, 143, 110-120.	3.6	21
26	Perfusion microbioreactor system with permeable membranes to monitor bacterial growth. Journal of Chemical Technology and Biotechnology, 2019, 94, 712-720.	3.2	6
27	EVALUATION OF SILICA NANOPARTICLE COLLOIDAL STABILITY WITH A FIBER OPTIC QUASI-ELASTIC LIGHT SCATTERING SENSOR. Brazilian Journal of Chemical Engineering, 2019, 36, 1519-1534.	1.3	9
28	Tracking the Evolution of Transiently Transfected Individual Cells in a Microfluidic Platform. Scientific Reports, 2018, 8, 1225.	3.3	16
29	Optical Fiber Sensor as an Alternative for Colorimetric Image Processing for the Assessment of Dye Concentration. , 2018, , .		2
30	Evaluation of siRNA and cationic liposomes complexes as a model for in vitro siRNA delivery to cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 280-289.	4.7	10
31	Application of Optical Fiber Sensor on Fermentation Monitoring. , 2018, , .		4
32	Cationic liposomes produced via ethanol injection method for dendritic cell therapy. Journal of Liposome Research, 2017, 27, 249-263.	3.3	13
33	Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes. Colloids and Surfaces B: Biointerfaces, 2017, 152, 406-413.	5.0	29
34	Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chemistry, 2017, 233, 343-350.	8.2	96
35	High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices. Colloids and Surfaces B: Biointerfaces, 2017, 156, 349-357.	5.0	51
36	Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles. Lab on A Chip, 2017, 17, 2281-2293.	6.0	39

Lucimara de la Torre

#	Article	IF	CITATIONS
37	A step forward towards the design of a continuous process to produce hybrid liposome/protein microcapsules. Journal of Food Engineering, 2017, 214, 175-181.	5.2	7
38	Recombinant protein-based nanocarriers and their association with cationic liposomes: Characterization and in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 1-10.	4.7	11
39	High adhesion strength and hybrid irreversible/reversible full-PDMS microfluidic chips. Analytica Chimica Acta, 2017, 951, 116-123.	5.4	15
40	Biopolymers for gene delivery applications. , 2017, , 289-323.		1
41	Microfluidic tools toward industrial biotechnology. Biotechnology Progress, 2016, 32, 1372-1389.	2.6	32
42	Dendritic Cells Stimulated by Cationic Liposomes. Journal of Nanoscience and Nanotechnology, 2016, 16, 270-279.	0.9	6
43	Microfluidic Assembly of pDNA/Cationic Liposome Lipoplexes with High pDNA Loading for Gene Delivery. Langmuir, 2016, 32, 1799-1807.	3.5	36
44	Structural characterization of β-carotene-incorporated nanovesicles produced with non-purified phospholipids. Food Research International, 2016, 79, 95-105.	6.2	40
45	Cultivation of yeast in diffusion-based microfluidic device. Biochemical Engineering Journal, 2016, 105, 288-295.	3.6	14
46	Lipid Matrices for Nanoencapsulation in Food: Liposomes and Lipid Nanoparticles. Food Engineering Series, 2015, , 99-143.	0.7	5
47	Chitosan nanoparticles produced with the gradual temperature decrease technique for sustained gene delivery. Biochemical Engineering Journal, 2015, 103, 114-121.	3.6	16
48	Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers. Colloids and Surfaces B: Biointerfaces, 2015, 134, 475-482.	5.0	88
49	Association between Cationic Liposomes and Low Molecular Weight Hyaluronic Acid. Langmuir, 2015, 31, 3308-3317.	3.5	34
50	Physicochemical and in vitro evaluation of cationic liposome, hyaluronic acid and plasmid DNA as pseudo-ternary complexes for gene delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 262-270.	4.7	13
51	Scalable production of highly concentrated chitosan/TPP nanoparticles in different pHs and evaluation of the in vitro transfection efficiency. Biochemical Engineering Journal, 2015, 94, 65-73.	3.6	37
52	Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide. Journal of Biotechnology, 2014, 173, 10-18.	3.8	16
53	Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloids and Surfaces B: Biointerfaces, 2013, 111, 203-210.	5.0	59
54	Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chemical Engineering Journal, 2013, 226, 423-433.	12.7	88

Lucimara de la Torre

#	Article	IF	CITATIONS
55	Influence of particle size and fluid fraction on rheological and extrusion properties of crosslinked hyaluronic acid hydrogel dispersions. Journal of Applied Polymer Science, 2013, 128, 2180-2185.	2.6	13
56	Cationic Liposomes as Non-viral Vector for RNA Delivery in Cancer Immunotherapy. Recent Patents on Drug Delivery and Formulation, 2013, 7, 99-110.	2.1	8
57	TB Vaccines: State of the Art and Progresses. , 2013, , 237-256.		0
58	Effects of extrusion, lipid concentration and purity on physico-chemical and biological properties of cationic liposomes for gene vaccine applications. Journal of Microencapsulation, 2012, 29, 759-769.	2.8	13
59	Correlation of the Physicochemical and Structural Properties of pDNA/Cationic Liposome Complexes with Their <i>in Vitro</i> Transfection. Langmuir, 2012, 28, 11535-11545.	3.5	39
60	Effectiveness, against tuberculosis, of pseudo-ternary complexes: Peptide-DNA-cationic liposome. Journal of Colloid and Interface Science, 2012, 373, 102-109.	9.4	24
61	Technological Aspects of Scalable Processes for the Production of Functional Liposomes for Gene Therapy. , 2011, , .		6
62	Surface miscibility of EPC/DOTAP/DOPE in binary and ternary mixed monolayers. Colloids and Surfaces B: Biointerfaces, 2011, 83, 260-269.	5.0	19
63	The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes. Colloids and Surfaces B: Biointerfaces, 2009, 73, 175-184.	5.0	30
64	Protective efficacy of different strategies employing <i>Mycobacterium leprae</i> heat-shock protein 65 against tuberculosis. Expert Opinion on Biological Therapy, 2008, 8, 1255-1264.	3.1	21
65	Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunology, 2008, 9, 38.	2.2	82
66	Su.30. Mycobacterium tuberculosis Infection is Diminished in Mice Immunized by Intranasal Route with a Novel Cationic Liposome Carrying DNA-hsp65. Clinical Immunology, 2008, 127, S134.	3.2	0
67	A mathematical model describing the kinetic of cationic liposome production from dried lipid films adsorbed in a multitubular system. Brazilian Journal of Chemical Engineering, 2007, 24, 477-486.	1.3	5
68	Evaluation of the electrostatic association between cationic and stealth liposomes with nucleic acids in microfluidics. , 0, , .		0
69	Synthesis of peptide-based nanoparticles on electrostatic complexation via microfluidic route. , 0, , .		0