Sander W Spiekstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309268/publications.pdf Version: 2024-02-01

SANDED W/ SDIEKSTDA

#	Article	IF	CITATIONS
1	Prognostic tools for hypertrophic scar formation based on fundamental differences in systemic immunity. Experimental Dermatology, 2021, 30, 169-178.	1.4	6
2	Assessment of cytotoxicity and sensitization potential of intradermally injected tattoo inks in reconstructed human skin. Contact Dermatitis, 2021, 85, 324-339.	0.8	8
3	Patch test–relevant concentrations of metal salts cause localized cytotoxicity, including apoptosis, in skin ex vivo. Contact Dermatitis, 2021, 85, 531-542.	0.8	4
4	A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin. Frontiers in Toxicology, 2021, 3, 824825.	1.6	17
5	Titanium salts tested in reconstructed human skin with integrated <scp>MUTZ</scp> â€3â€derived Langerhans cells show an irritant rather than a sensitizing potential. Contact Dermatitis, 2020, 83, 337-346.	0.8	9
6	Targeting of the C-Type Lectin Receptor Langerin Using Bifunctional Mannosylated Antigens. Frontiers in Cell and Developmental Biology, 2020, 8, 556.	1.8	13
7	Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 761-773.	1.3	31
8	Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay. Toxicology, 2018, 393, 62-72.	2.0	23
9	Allergens of permanent hair dyes induces epidermal damage, skin barrier loss and IL-1 α increase in epidermal in vitro model. Food and Chemical Toxicology, 2018, 112, 265-272.	1.8	12
10	Comparison of the skin sensitization potential of 3 red and 2 black tattoo inks using interleukinâ€18 as a biomarker in a reconstructed human skin model. Contact Dermatitis, 2018, 79, 336-345.	0.8	29
11	Epidermal Equivalent (EE) Potency Assay. , 2017, , 273-287.		0
12	Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Engineering - Part C: Methods, 2016, 22, 781-791.	1.1	55
13	Immune-competent human skin disease models. Drug Discovery Today, 2016, 21, 1479-1488.	3.2	39
14	MUTZ-3 Langerhans Cell maturation and CXCL12 independent migration in reconstructed human gingiva. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 423-434.	0.9	14
15	P53 and Thymidine Dimer Induction in Daily Low Emission Broad Band UV Treatment. MOJ Immunology, 2016, 4, .	11.0	0
16	Gingiva Equivalents Secrete Negligible Amounts of Key Chemokines Involved in Langerhans Cell Migration Compared to Skin Equivalents. Journal of Immunology Research, 2015, 2015, 1-11.	0.9	33
17	MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicology and Applied Pharmacology, 2015, 287, 35-42.	1.3	64
18	International ring trial of the epidermal equivalent sensitizer potency assay: reproducibility and predictive capacity. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 251-268.	0.9	19

SANDER W SPIEKSTRA

#	Article	IF	CITATIONS
19	Transfer of a two-tiered keratinocyte assay: IL-18 production by NCTC2544 to determine the skin sensitizing capacity and epidermal equivalent assay to determine sensitizer potency. Toxicology in Vitro, 2013, 27, 1135-1150.	1.1	39
20	An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicology and Applied Pharmacology, 2013, 272, 529-541.	1.3	99
21	Dendritic cell migration assay: A potential prediction model for identification of contact allergens. Toxicology in Vitro, 2013, 27, 1170-1179.	1.1	21
22	CCL5 and CCL20 mediate immigration of Langerhans cells into the epidermis of full thickness human skin equivalents. European Journal of Cell Biology, 2012, 91, 765-773.	1.6	34
23	A potential in vitro epidermal equivalent assay to determine sensitizer potency. Toxicology in Vitro, 2011, 25, 347-357.	1.1	54
24	Inter-laboratory study of the in vitro dendritic cell migration assay for identification of contact allergens. Toxicology in Vitro, 2011, 25, 2124-2134.	1.1	25
25	Technical Advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. Journal of Leukocyte Biology, 2011, 90, 1027-1033.	1.5	72
26	Comparison of a novel CXCL12/CCL5 dependent migration assay with CXCL8 secretion and CD86 expression for distinguishing sensitizers from non-sensitizers using MUTZ-3 Langerhans cells. Toxicology in Vitro, 2010, 24, 578-585.	1.1	43
27	Potential method to determine irritant potency in vitro – Comparison of two reconstructed epidermal culture models with different barrier competency. Toxicology in Vitro, 2009, 23, 349-355.	1.1	39
28	Woundâ€healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair and Regeneration, 2007, 15, 708-717.	1.5	136
29	Cytokines at different stratum corneum levels in normal and sodium lauryl sulphate-irritated skin. Skin Research and Technology, 2007, 13, 390-398.	0.8	64
30	Cytokine and chemokine release upon prolonged mechanical loading of the epidermis. Experimental Dermatology, 2007, 16, 567-573.	1.4	44
31	Autologous full-thickness skin substitute for healing chronic wounds. British Journal of Dermatology, 2006, 155, 267-274.	1.4	72
32	Induction of cytokine (interleukin-1alpha and tumor necrosis factor-alpha) and chemokine (CCL20,) Tj ETQq0 0 C 14, 109-116.	rgBT /Ove 1.4	erlock 10 Tf 5 94
33	Ranking of Allergenic Potency of Rubber Chemicals in a Modified Local Lymph Node Assay. Toxicological Sciences, 2002, 66, 226-232.	1.4	46
34	Determination of the sensitising activity of the rubber contact sensitisers TMTD, ZDMC, MBT and DEA in a modified local lymph node assay and the effect of sodium dodecyl sulfate pretreatment on local lymph node responses. Toxicology, 2002, 176, 123-134.	2.0	34
35	Assessment of Preferential T-Helper 1 or T-Helper 2 Induction by Low Molecular Weight Compounds Using the Local Lymph Node Assay in Conjunction with RT-PCR and ELISA for Interferon-I ³ and Interleukin-4. Toxicology and Applied Pharmacology, 2000, 162, 77-85.	1.3	88
36	In vitro exposure effects of cyclosporin A and bis(tri-n-butyltin)oxide on lymphocyte proliferation, cytokine (receptor) mRNA expression, and cell surface marker expression in rat thymocytes and splenocytes. Toxicology, 1999, 135, 49-66.	2.0	30