Abhay Sagare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309192/publications.pdf Version: 2024-02-01

ARHAV SACADE

#	Article	IF	CITATIONS
1	Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 2018, 14, 133-150.	10.1	1,731
2	Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron, 2015, 85, 296-302.	8.1	1,436
3	Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging. Neuron, 2010, 68, 409-427.	8.1	1,192
4	Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 2012, 485, 512-516.	27.8	1,019
5	Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nature Medicine, 2019, 25, 270-276.	30.7	987
6	LRP/Amyloid β-Peptide Interaction Mediates Differential Brain Efflux of Aβ Isoforms. Neuron, 2004, 43, 333-344.	8.1	752
7	apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. Journal of Clinical Investigation, 2008, 118, 4002-4013.	8.2	623
8	Transport Pathways for Clearance of Human Alzheimer's Amyloid β-Peptide and Apolipoproteins E and J in the Mouse Central Nervous System. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 909-918.	4.3	576
9	P-glycoprotein deficiency at the blood-brain barrier increases amyloid-Â deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 2005, 115, 3285-3290.	8.2	564
10	A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease. Journal of Clinical Investigation, 2012, 122, 1377-1392.	8.2	507
11	GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nature Neuroscience, 2015, 18, 521-530.	14.8	496
12	ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neuroscience, 2008, 11, 420-422.	14.8	409
13	Clearance of amyloid-β by circulating lipoprotein receptors. Nature Medicine, 2007, 13, 1029-1031.	30.7	381
14	Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nature Neuroscience, 2015, 18, 978-987.	14.8	334
15	Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nature Medicine, 2005, 11, 959-965.	30.7	274
16	lgG-Assisted Age-Dependent Clearance of Alzheimer's Amyloid Peptide by the Blood-Brain Barrier Neonatal Fc Receptor. Journal of Neuroscience, 2005, 25, 11495-11503.	3.6	238
17	SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nature Cell Biology, 2009, 11, 143-153.	10.3	237
18	Lowâ€density lipoprotein receptorâ€related proteinâ€1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid βâ€peptide elimination from the brain. Journal of Neurochemistry, 2010, 115, 1077-1089.	3.9	212

ABHAY SAGARE

#	Article	IF	CITATIONS
19	The Pericyte: A Forgotten Cell Type with Important Implications for <scp>A</scp> lzheimer's Disease?. Brain Pathology, 2014, 24, 371-386.	4.1	198
20	Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1035-42.	7.1	188
21	The Role of the Cell Surface LRP and Soluble LRP in Blood-Brain Barrier Aβ Clearance in Alzheimers Disease. Current Pharmaceutical Design, 2008, 14, 1601-1605.	1.9	170
22	Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1. Frontiers in Aging Neuroscience, 2015, 7, 136.	3.4	160
23	Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neuroscience Letters, 2015, 607, 97-101.	2.1	97
24	Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood, 2010, 115, 4963-4972.	1.4	95
25	Relationship Between Cyclophilin A Levels and Matrix Metalloproteinase 9 Activity in Cerebrospinal Fluid of Cognitively Normal Apolipoprotein E4 Carriers and Blood-Brain Barrier Breakdown. JAMA Neurology, 2013, 70, 1198.	9.0	93
26	Cerebrospinal Fluid Biomarkers of Neurovascular Dysfunction in Mild Dementia and Alzheimer'S Disease. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1055-1068.	4.3	92
27	Role of clusterin in the brain vascular clearance of amyloid-β. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8681-8682.	7.1	79
28	Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine, 2020, 59, 102883.	6.1	70
29	Endothelial Protein C Receptor-Assisted Transport of Activated Protein C across the Mouse Blood—Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 25-33.	4.3	64
30	Impaired Lipoprotein Receptor-Mediated Peripheral Binding of Plasma Amyloid-β is an Early Biomarker for Mild Cognitive Impairment Preceding Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 25-34.	2.6	63
31	Method for measurement of the blood–brain barrier permeability in the perfused mouse brain: application to amyloid-β peptide in wild type and Alzheimer's Tg2576 mice. Journal of Neuroscience Methods, 2004, 138, 233-242.	2.5	57
32	Protein S Protects Neurons from Excitotoxic Injury by Activating the TAM Receptor Tyro3–Phosphatidylinositol 3-Kinase–Akt Pathway through Its Sex Hormone-Binding Globulin-Like Region. Journal of Neuroscience, 2010, 30, 15521-15534.	3.6	57
33	3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. Journal of Experimental Medicine, 2019, 216, 279-293.	8.5	55
34	Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice. Brain Research, 2010, 1317, 218-226.	2.2	42
35	A Lipoprotein Receptor Cluster IV Mutant Preferentially Binds Amyloid-β and Regulates Its Clearance from the Mouse Brain. Journal of Biological Chemistry, 2013, 288, 15154-15166.	3.4	33
36	From the liver to the blood–brain barrier: An interconnected system regulating brain amyloidâ€Î² levels. Journal of Neuroscience Research, 2011, 89, 967-968.	2.9	24

#	Article	IF	CITATIONS
37	Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology, 2018, 134, 293-301.	4.1	15
38	Protection of ischemic white matter and oligodendrocytes in mice by 3K3A-activated protein C. Journal of Experimental Medicine, 2022, 219, .	8.5	12
39	O2-03-03 Inefficient LRP-mediated Aβ clearance at the blood-brain barrier contributes to neurotoxic and vasculotropic Aβ brain accumulations. Neurobiology of Aging, 2004, 25, S36-S37.	3.1	0