List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6308844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal induced polarization coupling in double-cladding linearly polarized fiber lasers. Optics Communications, 2022, 512, 128036.	1.0	4
2	6.85 kW Ytterbium-Raman Fiber Amplifier Based on Adjustable Raman Threshold Method. Journal of Lightwave Technology, 2022, 40, 3907-3915.	2.7	5
3	All-fiber high-speed image detection enabled by deep learning. Nature Communications, 2022, 13, 1433.	5.8	30
4	Spectral pedestal during the kilowatt-level amplification of a random fiber laser operating near the lasing threshold. Optics Express, 2022, 30, 296.	1.7	2
5	High-power and high-brightness Er:Yb codoped fiber MOPA operating at 1535 nm. Optics Express, 2022, 30, 16837.	1.7	7
6	Broadband nanostructured fiber mode convertors enabled by inverse design. Optics Express, 2022, 30, 17625.	1.7	2
7	10 kW Fiber Amplifier Seeded by Random Fiber Laser With Suppression of Spectral Broadening and SRS. IEEE Photonics Technology Letters, 2022, 34, 721-724.	1.3	14
8	Highâ€Speed Allâ€Fiber Microâ€Imaging with Large Depth of Field. Laser and Photonics Reviews, 2022, 16, .	4.4	11
9	Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers. Applied Optics, 2021, 60, 2046.	0.9	9
10	2196  W large-mode-area Er:Yb codoped fiber amplifier operating at 1600  nm pumped by 10 lasers. Optics Letters, 2021, 46, 2192.)18 â€ 1.7	8‰nm fiber 12
11	5.1 kW Tandem-Pumped Fiber Amplifier Seeded by Random Fiber Laser With High Suppression of Stimulated Raman Scattering. IEEE Journal of Quantum Electronics, 2021, 57, 1-9.	1.0	24
12	Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge. Optics Express, 2021, 29, 39406.	1.7	13
13	Tandem-Pumped High-Power Narrow-Linewidth Fiber Laser Tunable From 1060–1090 nm. Journal of Lightwave Technology, 2020, 38, 1461-1467.	2.7	9
14	1535–1620 nm Widely Tunable Watt-Level Single-Mode Er:Yb Codoped All-Fiber MOPA. IEEE Photonics Technology Letters, 2020, 32, 518-521.	1.3	5
15	An Efficient Non-Invasive Method to Fabricate In-Fiber Microcavities Using a Continuous-Wave Laser. IEEE Photonics Technology Letters, 2020, 32, 573-576.	1.3	1
16	Suppressing the amplified spontaneous emission in the high-power 1018-nm monolithic fiber laser by decreasing the feedback from the inner reflections. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2514.	0.9	4
17	Largely Tunable Terahertz Circular Polarization Splitters Based on Patterned Graphene Nanoantenna Arrays. IEEE Photonics Journal, 2019, 11, 1-11.	1.0	12
18	Exploring the initiation of fiber fuse. Scientific Reports, 2019, 9, 11655.	1.6	10

0

#	Article	IF	CITATIONS
19	An Efficient 4-kW Level Random Fiber Laser Based on a Tandem-Pumping Scheme. IEEE Photonics Technology Letters, 2019, 31, 817-820.	1.3	20
20	Beam Transmission Properties in High Power Ytterbium-Doped Tandem-Pumping Fiber Amplifier. IEEE Photonics Journal, 2019, 11, 1-12.	1.0	6
21	Dual-wavelength bidirectional pumped high-power Raman fiber laser. High Power Laser Science and Engineering, 2019, 7, .	2.0	17
22	219 kW narrow linewidth FBC-based MOPA configuration fiber laser. Optics Express, 2019, 27, 3136.	1.7	43
23	Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency. OSA Continuum, 2019, 2, 1138.	1.8	10
24	A 1150-W 1018-nm Fiber Laser Bidirectional Pumped by Wavelength-Stabilized Laser Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	1.9	23
25	Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3 kW. Chinese Physics Letters, 2018, 35, 054201.	1.3	3
26	Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser. Laser Physics, 2018, 28, 125107.	0.6	11
27	All-fiber linearly polarized laser oscillator by fiber coiling loss control. Chinese Physics B, 2018, 27, 044201.	0.7	5
28	Fiber core mode leakage induced by refractive index variation in high-power fiber laser. Chinese Physics B, 2017, 26, 034205.	0.7	4
29	3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes. Laser Physics Letters, 2017, 14, 080001.	0.6	14
30	High-power 1018  nm ytterbium-doped fiber laser with output of 805  W. Optics Letters, 2017	7, 4127, 1193	3. 38
31	933 W Yb-doped fiber ASE amplifier with 504 nm bandwidth. Optics Express, 2016, 24, 19940.	1.7	21
32	Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser. Frontiers of Optoelectronics, 2016, 9, 301-305.	1.9	11
33	Fiber fuse behavior in kW-level continuous-wave double-clad field laser. Chinese Physics B, 2016, 25, 014204.	0.7	1
34	Evaluating the beam quality of double-cladding fiber lasers in applications. Applied Optics, 2016, 55, 6145.	2.1	17
35	Studies of central wavelength of high-power all-fiber superfluorescent sources with Yb-doped double-clad fibers. Optics Communications, 2016, 380, 250-259.	1.0	15

Pump couplers in a cascaded structure. International Journal of Nanotechnology, 2015, 12, 926. 0.1

#	Article	IF	CITATIONS
37	Stimulated Raman scattering threshold for partially coherent light in silica fibers. Optics Express, 2015, 23, 28438.	1.7	11
38	High energy, single-polarized, single-transverse-mode, nanosecond pulses generated by a multi-stage Yb-doped photonic crystal fiber amplifier. Optics Communications, 2015, 345, 168-172.	1.0	8
39	First experimental investigation of the amplification of a Yb-doped fiber laser pumped with 1000 and 1014-nm laser diodes. Optical Review, 2015, 22, 693-699.	1.2	1
40	High coupling efficiency and low signal light loss (2 + 1) × 1 coupler. Chinese Physics B, 2015, 24, 064208.	0.7	6
41	Efficiency and beam quality deterioration in double-cladding fiber amplifiers induced by core misalignment of fusion splices. Optics Communications, 2015, 351, 9-14.	1.0	4
42	Deterioration of laser beam quality caused by cladding modes in fusion splices of double-cladding fibers. Applied Physics B: Lasers and Optics, 2015, 120, 623-629.	1.1	3
43	Optical properties of ytterbium-doped tandem-pumped fiber oscillator. Chinese Physics B, 2014, 23, 014203.	0.7	3
44	Numerical analysis of mode competition and selection in Yb-doped multicore fiber lasers. , 2014, , .		2
45	High Energy and High Peak Power Nanosecond Pulses Generated by Fiber Amplifier. IEEE Photonics Technology Letters, 2014, 26, 2295-2298.	1.3	26
46	Optical properties of high power S-band fiber oscillators and amplifiers. , 2014, , .		0
47	Pump couplers in a series connection. , 2014, , .		0
48	670 kW nanosecond all-fiber super-irradiation pulsed amplifiers at high repetition rates. Journal of Optics (United Kingdom), 2014, 16, 105202.	1.0	9
49	The beam quality of a truncated Gaussian beam with aberrations. Laser Physics Letters, 2013, 10, 055001.	0.6	2
50	A Side-Pump Coupler With Refractive Index Valley Configuration for Fiber Lasers and Amplifiers. Journal of Lightwave Technology, 2013, 31, 2715-2722.	2.7	36
51	Theoretical study of pumping absorption in a co-linear side-pumping coupler. Optics Communications, 2013, 300, 220-224.	1.0	10
52	Low repetition rate broadband high energy and peak power nanosecond pulsed Yb-doped fiber amplifier. Optics and Laser Technology, 2013, 49, 284-287.	2.2	17
53	Effect of mode competition on photodarkening distribution of Yb-doped fiber laser. Optics Communications, 2013, 287, 167-175.	1.0	2
54	Orientation dependent wavefront correction system under grazing incidence. Optics Express, 2013, 21, 20497.	1.7	2

		15	0
#	ARTICLE Fiber coupler for mode selection and high-efficiency nump coupling. Ontics Letters, 2013, 38, 1170	lF 1 7	CITATIONS
56	Theoretical study of pump absorption of colinear side-pumping coupler with pumping and absorption loops. Optical Engineering, 2013, 52, 096111.	0.5	0
57	All-fiber high energy and peak power broadband Yb-doped fiber amplifier. Journal of Optics (United) Tj ETQq1 1	0.784314 1.0	rgBT /Overlo
58	Beam quality improvement by joint compensation of amplitude and phase. Optics Letters, 2013, 38, 1101.	1.7	19
59	Method to evaluate beam quality of Gaussian beams with aberrations. Applied Optics, 2012, 51, 6539.	0.9	11
60	Beam Transformation in Hybrid Fiber-Bulk Amplifier System. Applied Physics Express, 2012, 5, 112703.	1.1	3
61	High-Repetition-Rate, Single-Pass Third-Harmonic Generation of 354 nm Ultraviolet Laser with 51.5% Efficiency. Applied Physics Express, 2012, 5, 092702.	1.1	4
62	Fused angle-polished multi-points side-pumping coupler for monolithic fiber lasers and amplifiers. Optics Communications, 2012, 285, 2137-2143.	1.0	15
63	All-Fiber Mode-Locked Ring Laser With a Sagnac Filter. IEEE Photonics Technology Letters, 2011, 23, 1301-1303.	1.3	3
64	Double Loop Optical Buffer With Vertical 8-Figure Structure Based on a Collinear 3 \$imes\$ 3 Coupler. IEEE Photonics Technology Letters, 2011, 23, 1845-1847.	1.3	1
65	1.1-kW Ytterbium Monolithic Fiber Laser With Assembled End-Pump Scheme to Couple High Brightness Single Emitters. IEEE Photonics Technology Letters, 2011, 23, 697-699.	1.3	31
66	High-power all-fiber superfluorescent source with fused angle-polished side-pumping configuration. Applied Optics, 2011, 50, 1164.	2.1	22
67	Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure. Optics and Lasers in Engineering, 2011, 49, 1054-1059.	2.0	18
68	Spike suppression in fiber amplifiers through nonlinear polarization rotation. Optics Letters, 2010, 35, 1407.	1.7	2
69	Experimental and theoretical study of the weak-modulation all-normal-dispersion mode-locked fiber lasers. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1589.	0.9	2
70	Q-switched fiber laser by all-fiber piezoelectric modulation and pulsed pump. Optics Communications, 2009, 282, 2066-2069.	1.0	8
71	Flat-topped beam output from a double-clad rectangular dielectric waveguide laser with a high-index inner cladding. Optics Communications, 2009, 282, 2407-2412.	1.0	5
72	End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration. Optics Express, 2008, 16, 17864.	1.7	30

#	Article	lF	CITATIONS
73	Investigations on Transverse-Mode Competition and Beam Quality Modeling in End-Pumped Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 1009-1019.	1.0	9
74	Analysis of the pump-beam path in corner-pumped slab laser. Quantum Electronics, 2007, 37, 541-544.	0.3	0
75	Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. Optics Express, 2007, 15, 3236.	1.7	158
76	Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer. Optical Engineering, 2006, 45, 124201.	0.5	12
77	Laser performance of monolithic Cr, Nd:YAG crystal with prepumping modulation. Optical Engineering, 2005, 44, 014201.	0.5	6
78	Distributed pumping multifiber series fiber laser. Optics Express, 2005, 13, 2699.	1.7	26
79	Modeling of End-Pumped CW Yb:YAG Lasers Exhibiting Non-Uniform Temperature Distribution. Optical and Quantum Electronics, 2004, 36, 745-758.	1.5	2
80	LD side-pumped passively Q-switched Yb:YAG slab laser. Optics and Lasers in Engineering, 2004, 42, 413-419.	2.0	4
81	Performance of run-length limited (4, 18) code for optical storage systems. Optical and Quantum Electronics, 2004, 36, 1079-1088.	1.5	3
82	An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss. Optics Communications, 2004, 230, 401-410.	1.0	49
83	Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution. Optics Communications, 2004, 231, 331-341.	1.0	5
84	Studies of pump light leakage out of couplers for multi-coupler side-pumped Yb-doped double-clad fiber lasers. Optics Communications, 2004, 239, 421-428.	1.0	12
85	Modeling of radiation-balanced continuous-wave laser oscillators. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 539.	0.9	6
86	GaAs as a passive Q-switch and Brewster plate for pulsed Yb:YAG laser. Optics Communications, 2003, 222, 355-361.	1.0	9
87	Stabilization of pulse-to-pulse energy and width by gain-controlled prelase in laser-diode-pumped <bold>Q</bold> -switched laser. Optical Engineering, 2003, 42, 159.	0.5	7
88	Optical parametric oscillator pumped by single-cell SBS and two-cell SBS phase-conjugation beam. , 2003, , .		0
89	Static Stability Analysis for a Novel Permanent Magnetic Suspension Laser Beam Scanner. Japanese Journal of Applied Physics, 2002, 41, 1343-1346.	0.8	5
90	Indoor infrared wireless communication system based on Ethernet network. , 2002, , .		1

#	Article	IF	CITATIONS
91	Experiment and design of near-diffraction-limited cw and Q-cw Yb:YAG microchip lasers. , 2002, 4914, 448.		1
92	High-stability LD-pumped solid state laser. , 1999, , .		1