
Yujie Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6308549/publications.pdf

Version: 2024-02-01

YHHE DENC

#	Article	IF	CITATIONS
1	26  mJ/100  Hz CEP-stable near-single-cycle 4  μm laser based on OPCPA and hollow- Optics Letters, 2018, 43, 2197.	corg fiber	compressio
2	Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100  PW lasers. Optics Letters, 2020, 45, 2215.	3.3	31
3	13.4 fs, 0.1 Hz OPCPA Front End for the 100 PW-Class Laser Facility. Ultrafast Science, 2022, 2022, .	11.2	31
4	Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photonics Research, 2020, 8, 421.	7.0	20
5	A High-Energy, 100 Hz, Picosecond Laser for OPCPA Pumping. Applied Sciences (Switzerland), 2017, 7, 997.	2.5	12
6	Accurate characterization of mid-infrared ultrashort pulse based on second-harmonic-generation frequency-resolved optical gating. Optics and Laser Technology, 2019, 120, 105671.	4.6	11
7	High-energy, high-repetition-rate ultraviolet pulses from an efficiency-enhanced, frequency-tripled laser. High Power Laser Science and Engineering, 2021, 9, .	4.6	9
8	High-repetition-rate, high-peak-power 1450Ânm laser source based on optical parametric chirped pulse amplification. High Power Laser Science and Engineering, 2019, 7, .	4.6	5
9	Few-cycle mid-infrared laser based on nonlinear self-compression in solid thin plates. Optics Letters, 2021, 46, 5075.	3.3	5
10	Generation of high-contrast, joule-level pulses based on Nd:glass chirped pulse amplification laser. High Power Laser Science and Engineering, 2016, 4, .	4.6	4
11	Suppressing Temporal Pedestal in Nd:glass Laser Systems by Avoiding Far-Field Spectral Phase Noise. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	4
12	Pulse combination and compression in hollow-core fiber for few-cycle intense mid-infrared laser generation. Photonics Research, 2021, 9, 477.	7.0	4
13	Multipass active stretcher with large chirp for high-flux ultra-intense lasers. Optics Letters, 2019, 44, 1980.	3.3	4
14	Laser-induced damage tests based on a marker-based watershed algorithm with gray control. High Power Laser Science and Engineering, 2014, 2, .	4.6	3
15	Temporal contrast enhancement via nonlinear elliptical polarization rotation in a solid thin plate. Optics Express, 2022, 30, 26297.	3.4	3
16	Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes. Applied Sciences (Switzerland), 2020, 10, 8608.	2.5	2
17	Near-Infrared Supercontinuum and Ultrashort Pulses Generated Based on Phase-Mismatched Cascaded Frequency Conversion in DSTMS Crystal. IEEE Photonics Journal, 2020, 12, 1-6.	2.0	2
18	Generation of 56.5 W femtosecond laser radiation by the combination of an Nd-doped picosecond amplifier and multi-pass-cell device. Optics Express, 2022, 30, 24276.	3.4	2

Yujie Peng

#	Article	IF	CITATIONS
19	Polarization beam combination technique for gain saturation effect compensation in high-energy systems. Optical Engineering, 2016, 55, 066111.	1.0	1
20	1.9 μm Few-Cycle Pulses Based on Multi-Thin-Plate Spectral Broadening and Nonlinear Self-Compression. IEEE Photonics Journal, 2021, 13, 1-8.	2.0	1
21	Optimizing sub-nanosecond laser conditioning of DKDP crystals by varying the temporal shape of the pulse. Optics Express, 2021, 29, 35993.	3.4	1
22	Terahertz-assisted even harmonics generation inÂsilicon. IScience, 2022, 25, 103750.	4.1	1