
## Hafedh Kochkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6308304/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Synthesis of Hydrophobic TiO2–SiO2Mixed Oxides for the Epoxidation of Cyclohexene. Journal of<br>Catalysis, 1997, 171, 420-430.                                                                                   | 6.2  | 164       |
| 2  | Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms. Applied Catalysis B: Environmental, 2015, 163, 404-414.                         | 20.2 | 122       |
| 3  | Effect of Na content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid. Applied Catalysis B: Environmental, 2013, 138-139, 401-415.                                    | 20.2 | 94        |
| 4  | Reduced graphene oxide/TiO 2 nanotube composites for formic acid photodegradation. Applied Catalysis B: Environmental, 2017, 209, 203-213.                                                                        | 20.2 | 89        |
| 5  | Preparation and characterization of Pt/TiO2 nanotubes catalyst for methanol electro-oxidation.<br>Applied Catalysis B: Environmental, 2011, 106, 609-615.                                                         | 20.2 | 87        |
| 6  | Elaboration and characterization of sulfated and unsulfated V2O5/TiO2 nanotubes catalysts for chlorobenzene total oxidation. Applied Catalysis B: Environmental, 2014, 147, 58-64.                                | 20.2 | 74        |
| 7  | Shape-Controlled Synthesis of Silver and Palladium Nanoparticles Using β-Cyclodextrin. Journal of<br>Physical Chemistry C, 2011, 115, 11364-11373.                                                                | 3.1  | 63        |
| 8  | The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials<br>obtained by calcination of hydrogenotitanate nanotubes. Applied Catalysis B: Environmental, 2016, 181,<br>651-660. | 20.2 | 56        |
| 9  | TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Journal of Environmental Sciences, 2011, 23, 860-867.                | 6.1  | 55        |
| 10 | Study of Pd(II) adsorption over titanate nanotubes of different diameters. Journal of Colloid and Interface Science, 2009, 331, 27-31.                                                                            | 9.4  | 49        |
| 11 | Design of TiO2 nanorods and nanotubes doped with lanthanum and comparative kinetic study in the photodegradation of formic acid. Catalysis Communications, 2015, 61, 107-111.                                     | 3.3  | 42        |
| 12 | Optimization of the Alkaline Hydrothermal Route to Titanate Nanotubes by a Doehlert Matrix<br>Experience Design. Journal of Physical Chemistry C, 2009, 113, 1672-1679.                                           | 3.1  | 39        |
| 13 | Design of β-cyclodextrin modified TiO2 nanotubes for the adsorption of Cu(II): Isotherms and kinetics study. Journal of Colloid and Interface Science, 2017, 493, 77-84.                                          | 9.4  | 37        |
| 14 | Regioselective Oxidation of Hydroxyl Groups of Sugar and Its Derivatives Using Silver Catalysts<br>Mediated by TEMPO and Peroxodisulfate in Water. Journal of Catalysis, 2000, 194, 343-351.                      | 6.2  | 36        |
| 15 | Title is missing!. Catalysis Letters, 1999, 59, 79-81.                                                                                                                                                            | 2.6  | 34        |
| 16 | Design of TiO2 nanomaterials for the photodegradation of formic acid – Adsorption isotherms and kinetics study. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 279, 8-16.                         | 3.9  | 32        |
| 17 | Effect of cerium content and post-thermal treatment on doped anisotropic TiO2 nanomaterials and kinetic study of the photodegradation of formic acid. Journal of Molecular Catalysis A, 2015, 409, 162-170.       | 4.8  | 32        |
| 18 | Isomerization of Styrene Epoxide on Basic Solids. Catalysis Letters, 2002, 78, 91-94.                                                                                                                             | 2.6  | 27        |

Hafedh Kochkar

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Influence of reduced graphene oxide on the synergism between rutile and anatase TiO2 particles in photocatalytic degradation of formic acid. Molecular Catalysis, 2017, 432, 125-130.                                        | 2.0  | 27        |
| 20 | MgLa mixed oxides as highly active and selective heterogeneous catalysts for Wadsworth–Emmons<br>reactions. Applied Catalysis B: Environmental, 2005, 55, 177-183.                                                           | 20.2 | 23        |
| 21 | Pt-free sulphur resistant NOx traps. Applied Catalysis B: Environmental, 2004, 53, 21-27.                                                                                                                                    | 20.2 | 21        |
| 22 | Solar photocatalytic inactivation of Fusarium Solani over TiO2 nanomaterials with controlled<br>morphology—Formic acid effect. Catalysis Today, 2013, 209, 147-152.                                                          | 4.4  | 16        |
| 23 | One-pot deposition of palladium on hybrid TiO2 nanoparticles and catalytic applications in hydrogenation. Journal of Colloid and Interface Science, 2012, 369, 309-316.                                                      | 9.4  | 14        |
| 24 | Significant of injectable brucine PEGylated niosomes in treatment of MDA cancer cells. Journal of<br>Drug Delivery Science and Technology, 2022, 71, 103322.                                                                 | 3.0  | 14        |
| 25 | Crystallization of hydrophobic mesoporous titano-silicates useful as epoxidation catalysts.<br>Microporous and Mesoporous Materials, 2000, 39, 249-256.                                                                      | 4.4  | 11        |
| 26 | Influence of graphene and copper on the photocatalytic response of TiO2 nanotubes. Materials Science in Semiconductor Processing, 2020, 107, 104847.                                                                         | 4.0  | 11        |
| 27 | One-pot deposition of gold on hybrid TiO2 nanoparticles and catalytic application in the selective oxidation of benzyl alcohol. Materials Chemistry and Physics, 2015, 149-150, 59-68.                                       | 4.0  | 10        |
| 28 | Recent Advances in the Development of 1,2,3-Triazole-containing Derivatives as Potential Antifungal<br>Agents and Inhibitors of Lanoster ol 14î±-Demethylase. Current Topics in Medicinal Chemistry, 2021, 21,<br>462-506.   | 2.1  | 10        |
| 29 | Novel synthesis route to titanium oxides nanomaterials using soluble starch. Journal of Sol-Gel<br>Science and Technology, 2007, 42, 27-33.                                                                                  | 2.4  | 9         |
| 30 | Titanium dioxide nanotubes/polyhydroxyfullerene composites for formic acid photodegradation.<br>Applied Surface Science, 2017, 412, 306-318.                                                                                 | 6.1  | 9         |
| 31 | Preparation and catalytic activity of nanostructured Pd catalysts supported on hydrogenotitanate nanotubes. Journal of Materials Science, 2009, 44, 6677-6682.                                                               | 3.7  | 8         |
| 32 | p-Hydroxybenzoic acid degradation by Fe/Pd-HNT catalysts with in situ generated hydrogen peroxide.<br>Studies in Surface Science and Catalysis, 2010, 175, 593-596.                                                          | 1.5  | 7         |
| 33 | From adsorption of rare earth elements on TiO2 nanotubes to preconcentration column application.<br>Microchemical Journal, 2019, 149, 104021.                                                                                | 4.5  | 6         |
| 34 | Enhancement of the photocatalytic response of Cu-doped TiO2 nanotubes induced by the addition of strontium. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113858.                                      | 3.9  | 6         |
| 35 | Penicillin G Adsorption Isotherms and Kinetic Studies Using TiO <sub>2</sub> Nanotubes Free and<br>Modified with β-Cyclodextrin. Chemistry Letters, 2015, 44, 1289-1291.                                                     | 1.3  | 4         |
| 36 | Design of La–C60/TiO2 Nanocomposites: Study of the Effect of Lanthanum and Fullerenol Addition<br>Order onto TiO2. Application for the Photocatalytic Degradation of Formic Acid. Chemistry Letters,<br>2015, 44, 1774-1776. | 1.3  | 4         |

Hafedh Kochkar

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Low temperature design of titanium dioxide anatase materials decorated with cyanuric acid for formic acid photodegradation. Journal of Saudi Chemical Society, 2020, 24, 351-363.                                                          | 5.2 | 4         |
| 38 | One-Pot deposition of palladium on hybrid TiO2 nanoparticles: Application for the hydrogenation of cinnamaldehyde. Studies in Surface Science and Catalysis, 2010, 175, 605-608.                                                           | 1.5 | 3         |
| 39 | In Situ Generated H2O2 over Supported Pd–Au Clusters in Hybrid Titania Nanocrystallites. Chemistry<br>Letters, 2014, 43, 1046-1048.                                                                                                        | 1.3 | 3         |
| 40 | Nanoscale Advances of Carbon-Titanium Dioxide Nanomaterials in Photocatalysis Applications.<br>Reviews in Nanoscience and Nanotechnology, 2015, 4, 108-134.                                                                                | 0.4 | 3         |
| 41 | Highly active ruthenium catalysts supported on nanostructured titanates for application in catalytic wet air oxidation of p-hydroxybenzoic acid. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 377-386.                          | 1.7 | 2         |
| 42 | Investigation of physicochemical and electrical properties of \$\$hbox {TiO}_{{2}}\$\$ nanotubes/graphene oxide nanocomposite. Bulletin of Materials Science, 2020, 43, 1.                                                                 | 1.7 | 2         |
| 43 | Preparation of stable mesoporous titanium oxides nanomaterials using soluble starch. Studies in Surface Science and Catalysis, 2006, 162, 377-384.                                                                                         | 1.5 | 1         |
| 44 | Synthesis Design of TiO2 Nanotubes and Nanowires and Photocatalytic Applications in the<br>Degradation of Organic Pollutants in the Presence or not of Microorganisms. Materials Research<br>Society Symposia Proceedings, 2012, 1442, 13. | 0.1 | 1         |
| 45 | Elaboration of Titanium Oxide Nanocrystallites by Sol–Gel Method with Soluble-starch Stabilization<br>and Coupling of Hydrothermal and Biological Extraction. Chemistry Letters, 2014, 43, 1487-1489.                                      | 1.3 | 1         |
| 46 | Catalytic activity of nanostructured Pd catalysts supported on hydrogenotitanate nanotubes. Studies<br>in Surface Science and Catalysis, 2010, , 609-612.                                                                                  | 1.5 | 0         |