
José M Munuera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6308223/publications.pdf Version: 2024-02-01

LOSÃO M MUNUEDA

#	Article	IF	CITATIONS
1	A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 54860-54873.	4.0	9
2	High Performance Na-O ₂ Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene. ACS Applied Materials & Interfaces, 2020, 12, 494-506.	4.0	32
3	Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved MoS ₂ Nanosheets for Energy Storage and Catalytic Applications. ACS Applied Materials & Interfaces, 2019, 11, 36991-37003.	4.0	43
4	An aqueous cathodic delamination route towards high quality graphene flakes for oil sorption and electrochemical charge storage applications. Chemical Engineering Journal, 2019, 372, 1226-1239.	6.6	14
5	A direct route to activated two-dimensional cobalt oxide nanosheets for electrochemical energy storage, catalytic and environmental applications. Journal of Colloid and Interface Science, 2019, 539, 263-276.	5.0	4
6	A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil. Carbon, 2017, 115, 625-628.	5.4	43
7	Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. ACS Applied Materials & Interfaces, 2017, 9, 24085-24099.	4.0	92
8	Recent advances and energy-related applications of high quality/chemically doped graphenes obtained by electrochemical exfoliation methods. Journal of Materials Chemistry A, 2017, 5, 7228-7242.	5.2	69
9	Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid–Base Interactions. ACS Applied Materials & Interfaces, 2017, 9, 2835-2845.	4.0	33
10	Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and Biocompatibility of Chemically Exfoliated MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 27974-27986.	4.0	73
11	Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. Nanoscale, 2016, 8, 2982-2998.	2.8	84
12	High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. Carbon, 2015, 94, 729-739.	5.4	83
13	Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer. ACS Applied Materials & Interfaces, 2015, 7, 10293-10307.	4.0	101
14	Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. ACS Applied Materials & Interfaces, 2015, 7, 24032-24045.	4.0	57
15	Chemically Exfoliated MoS ₂ Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase. ACS Applied Materials & Interfaces, 2014, 6, 21702-21710.	4.0	126