Auriel A Willette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/63081/publications.pdf

Version: 2024-02-01

257101 223531 2,276 55 24 46 h-index citations g-index papers 62 62 62 4617 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	APOE, TOMM40, and sex interactions on neural network connectivity. Neurobiology of Aging, 2022, 109, 158-165.	1.5	8
2	Impact of COVIDâ€19 on the Onset and Progression of Alzheimer's Disease and Related Dementias: A Roadmap for Future Research. Alzheimer's and Dementia, 2022, 18, 1038-1046.	0.4	34
3	Clostridioides difficile Infection Dysregulates Brain Dopamine Metabolism. Microbiology Spectrum, 2022, 10, e0007322.	1.2	10
4	Using machine learning to predict COVID-19 infection and severity risk among 4510 aged adults: a UK Biobank cohort study. Scientific Reports, 2022, 12, 7736.	1.6	11
5	Infantile Iron Deficiency Affects Brain Development in Monkeys Even After Treatment of Anemia. Frontiers in Human Neuroscience, 2021, 15, 624107.	1.0	9
6	Inflammation, negative affect, and amyloid burden in Alzheimer's disease: Insights from the kynurenine pathway. Brain, Behavior, and Immunity, 2021, 95, 216-225.	2.0	19
7	Treatment With Hydrolyzed Diet Supplemented With Prebiotics and Glycosaminoglycans Alters Lipid Metabolism in Canine Inflammatory Bowel Disease. Frontiers in Veterinary Science, 2020, 7, 451.	0.9	10
8	CSF glucose tracks regional tau progression based on Alzheimer's disease risk factors. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12080.	1.8	6
9	Sex and sex hormones largely explain associations between glucose levels and brain atrophy in ADâ€sensitive regions. Alzheimer's and Dementia, 2020, 16, e045259.	0.4	О
10	TOMM40 has genomic effects on hippocampal volume in midâ€life adults independent of APOE Îμ4 status. Alzheimer's and Dementia, 2020, 16, e045347.	0.4	0
11	In preclinical AD, impaired amyloid clearance and mitochondrial function underlie associations between white matter integrity and glucose regulation deficits. Alzheimer's and Dementia, 2020, 16, e046745.	0.4	O
12	Genetic Factors of Alzheimer's Disease Modulate How Diet is Associated with Long-Term Cognitive Trajectories: A UK Biobank Study. Journal of Alzheimer's Disease, 2020, 78, 1245-1257.	1.2	15
13	Walking in the Light: How History of Physical Activity, Sunlight, and Vitamin D Account for Body Fat—A UK Biobank Study. Obesity, 2020, 28, 1428-1437.	1.5	2
14	The Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Frontiers in Aging Neuroscience, 2019, 11, 130.	1.7	76
15	Aging-related changes in fluid intelligence, muscle and adipose mass, and sex-specific immunologic mediation: A longitudinal UK Biobank study. Brain, Behavior, and Immunity, 2019, 82, 396-405.	2.0	15
16	Cholecystokinin and Alzheimer's disease: a biomarker of metabolic function, neural integrity, and cognitive performance. Neurobiology of Aging, 2019, 76, 201-207.	1.5	37
17	Is Cerebrospinal Fluid Superoxide Dismutase 1 a Biomarker of Tau But Not Amyloid-Induced Neurodegeneration in Alzheimer's Disease?. Antioxidants and Redox Signaling, 2019, 31, 572-578.	2.5	13
18	Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2019, 14, 595-607.	2.1	16

#	Article	IF	Citations
19	Neuroinflammation in Alzheimer's disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behavioural Brain Research, 2018, 347, 49-56.	1.2	39
20	Neural, Hormonal, and Cognitive Correlates of Metabolic Dysfunction and Emotional Reactivity. Psychosomatic Medicine, 2018, 80, 452-459.	1.3	3
21	Big Data and Parkinson's Disease: Exploration, Analyses, and Data Challenges , 2018, , .		4
22	Family history and <i>TOMM40</i> '523 interactive associations with memory in middleâ€aged and Alzheimer's disease cohorts. Alzheimer's and Dementia, 2017, 13, 1217-1225.	0.4	12
23	Autotaxin is Related to Metabolic Dysfunction and Predicts Alzheimer's Disease Outcomes. Journal of Alzheimer's Disease, 2017, 56, 403-413.	1.2	24
24	[ICâ€Pâ€066]: AD FAMILY HISTORY MODULATES EFFECTS OF TOMM40 â€~523' POLYâ€T ON MTL ATROPHY HYPOMETABOLISM IN PRECLINICAL AND AD COHORTS. Alzheimer's and Dementia, 2017, 13, P54.	AND 0.4	0
25	Peripheral versus Central Index ofÂMetabolic Dysfunction and Associations with Clinical and Pathological Outcomes inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 1313-1324.	1.2	13
26	Aging modifies the effect of GCH1 RS11158026 on DAT uptake and Parkinson's disease clinical severity. Neurobiology of Aging, 2017, 50, 39-46.	1.5	11
27	[O1–01–01]: NEUROINFLAMMATION, DEPRESSION AND ALZHEIMER's DISEASE: INSIGHTS FROM THE KYNURENINE PATHWAY. Alzheimer's and Dementia, 2017, 13, P181.	0.4	1
28	ICâ€Pâ€065: AD Family History in Nonâ€APOE4S Modulates The Effects of '523 TOMM40 on Neuropathology and Memory Decline. Alzheimer's and Dementia, 2016, 12, P51.	0.4	0
29	P2â€075: Alzheimer's Disease Family History Modulates Effects of '523 TOMM40 on Memory Decline and Medial Temporal Pathology. Alzheimer's and Dementia, 2016, 12, P636.	0.4	0
30	Neuronal Pentraxin 2 predicts medial temporal atrophy and memory decline across the Alzheimer's disease spectrum. Brain, Behavior, and Immunity, 2016, 58, 201-208.	2.0	51
31	Confounders Regarding the Association of Insulin Resistance and Alzheimer Disease—Reply. JAMA Neurology, 2016, 73, 240.	4.5	O
32	Insulin Resistance and <i>APOE</i> iμ4. JAMA Neurology, 2015, 72, 1536.	4.5	4
33	Insulin Resistance Predicts Medial Temporal Hypermetabolism in Mild Cognitive Impairment Conversion to Alzheimer Disease. Diabetes, 2015, 64, 1933-1940.	0.3	94
34	Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle–Aged Adults at Risk for Alzheimer Disease. JAMA Neurology, 2015, 72, 1013.	4.5	305
35	Does the brain shrink as the waist expands?. Ageing Research Reviews, 2015, 20, 86-97.	5.0	133
36	Insulin resistance predicts brain amyloid deposition in late middleâ€aged adults. Alzheimer's and Dementia, 2015, 11, 504.	0.4	196

#	Article	IF	CITATIONS
37	Prognostic classification of mild cognitive impairment and Alzheimer׳s disease: MRI independent component analysis. Psychiatry Research - Neuroimaging, 2014, 224, 81-88.	0.9	40
38	Effect of age and calorie restriction on corpus callosal integrity in rhesus macaques: A fiber tractography study. Neuroscience Letters, 2014, 569, 38-42.	1.0	8
39	Low cerebral blood flow is associated with lower memory function in metabolic syndrome. Obesity, 2013, 21, 1313-1320.	1.5	117
40	Calorie restriction attenuates astrogliosis but not amyloid plaque load in aged rhesus macaques: A preliminary quantitative imaging study. Brain Research, 2013, 1508, 1-8.	1.1	20
41	Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neurolmage, 2013, 64, 112-119.	2.1	170
42	Insulin Resistance, Brain Atrophy, and Cognitive Performance in Late Middle–Aged Adults. Diabetes Care, 2013, 36, 443-449.	4.3	173
43	White Matter Microstructural Integrity and Executive Function in Parkinson's Disease. Journal of the International Neuropsychological Society, 2013, 19, 349-354.	1.2	34
44	Calorie Restriction Reduces the Influence of Glucoregulatory Dysfunction on Regional Brain Volume in Aged Rhesus Monkeys. Diabetes, 2012, 61, 1036-1042.	0.3	44
45	A Calorie-Restricted Diet Decreases Brain Iron Accumulation and Preserves Motor Performance in Old Rhesus Monkeys. Journal of Neuroscience, 2012, 32, 11897-11904.	1.7	31
46	Homocysteine, neural atrophy, and the effect of caloric restriction in rhesus monkeys. Neurobiology of Aging, 2012, 33, 670-680.	1.5	26
47	CSF T-Tau/AÎ ² 42 Predicts White Matter Microstructure in Healthy Adults at Risk for Alzheimer's Disease. PLoS ONE, 2012, 7, e37720.	1.1	84
48	Brain volumetric and microstructural correlates of executive and motor performance in aged rhesus monkeys. Frontiers in Aging Neuroscience, 2012, 4, 31.	1.7	34
49	Calorie restriction reduces psychological stress reactivity and its association with brain volume and microstructure in aged rhesus monkeys. Psychoneuroendocrinology, 2012, 37, 903-916.	1.3	36
50	Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behavioural Brain Research, 2011, 219, 108-115.	1.2	79
51	NSAIDs may protect against age-related brain atrophy. Frontiers in Aging Neuroscience, 2010, 2, .	1.7	14
52	A Calorie-Restricted Diet Decreases Brain Iron Accumulation and Preserves Motor Performance in Old Rhesus Monkeys. Journal of Neuroscience, 2010, 30, 7940-7947.	1.7	64
53	Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neurolmage, 2010, 51, 987-994.	2.1	54
54	Environmental context differentially affects behavioral, leukocyte, cortisol, and interleukin-6 responses to low doses of endotoxin in the rhesus monkey. Brain, Behavior, and Immunity, 2007, 21, 807-815.	2.0	69

 #	Article	IF	CITATIONS
55	Beer, wine, and spirits differentially influence body composition in older White adults \hat{a} a UK Biobank study. Obesity Science and Practice, 0 , , .	1.0	4