List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6308056/publications.pdf Version: 2024-02-01

ΙλΝΙς Κ Βιιρκηλρητ

#	Article	IF	CITATIONS
1	Stromal Notch ligands foster lymphopenia-driven functional plasticity and homeostatic proliferation of naive B cells. Journal of Clinical Investigation, 2022, 132, .	8.2	4
2	Lymphocyte egress signal sphingosine-1-phosphate promotes ERM-guided, bleb-based migration. Journal of Cell Biology, 2021, 220, .	5.2	20
3	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	30.7	88
4	Cryptosporidium rhoptry effector protein ROP1 injected during invasion targets the host cytoskeletal modulator LMO7. Cell Host and Microbe, 2021, 29, 1407-1420.e5.	11.0	33
5	A Murine Model of X-Linked Moesin-Associated Immunodeficiency (X-MAID) Reveals Defects in T Cell Homeostasis and Migration. Frontiers in Immunology, 2021, 12, 726406.	4.8	1
6	Ectromelia-encoded virulence factor C15 specifically inhibits antigen presentation to CD4+ÂT cells post peptide loading. PLoS Pathogens, 2020, 16, e1008685.	4.7	5
7	LFA-1 signals to promote actin polymerization and upstream migration in T cells. Journal of Cell Science, 2020, 133, .	2.0	26
8	HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science, 2020, 369, 202-207.	12.6	65
9	Multiple actin networks coordinate mechanotransduction at the immunological synapse. Journal of Cell Biology, 2020, 219, .	5.2	64
10	Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. Journal of Clinical Investigation, 2020, 130, 3637-3653.	8.2	30
11	CrkL is required for donor T cell migration to GvHD target organs. Oncotarget, 2020, 11, 1505-1514.	1.8	4
12	Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. ELife, 2020, 9, .	6.0	58
13	Single Chain Variable Fragment Linker Length Regulates CAR Biology and T Cell Efficacy. Blood, 2019, 134, 247-247.	1.4	11
14	Oncogene-Independent Adaptation of Pre-B Cell Receptor Signaling Confers Drug Resistance and Signaling Plasticity in Ph-like ALL. Blood, 2019, 134, 747-747.	1.4	1
15	Murine chronic graft-versus-host disease proteome profiling discovers CCL15 as a novel biomarker in patients. Blood, 2018, 131, 1743-1754.	1.4	21
16	Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Science Signaling, 2018, 11, .	3.6	33
17	The Actin Cytoskeleton: A Mechanical Intermediate for Signal Integration at the Immunological Synapse. Frontiers in Cell and Developmental Biology, 2018, 6, 116.	3.7	45
18	Motile Dendritic Cells Sense and Respond to Substrate Geometry. Annals of Biomedical Engineering, 2018, 46, 1348-1361.	2.5	7

#	Article	IF	CITATIONS
19	Integrins Modulate T Cell Receptor Signaling by Constraining Actin Flow at the Immunological Synapse. Frontiers in Immunology, 2018, 9, 25.	4.8	69
20	Analyzing Actin Dynamics at the Immunological Synapse. Methods in Molecular Biology, 2017, 1584, 7-29.	0.9	20
21	Cutting Edge: Murine NK Cells Degranulate and Retain Cytotoxic Function without Store-Operated Calcium Entry. Journal of Immunology, 2017, 199, 1973-1978.	0.8	10
22	The Arp2/3 complex binding protein HS1 is required for efficient dendritic cell random migration and force generation. Integrative Biology (United Kingdom), 2017, 9, 695-708.	1.3	19
23	Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Frontiers in Immunology, 2016, 7, 68.	4.8	114
24	Embracing the Enemy: Cell-to-Cell Force Transmission Enhances Cytotoxicity. Developmental Cell, 2016, 36, 592-594.	7.0	1
25	Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse. ELife, 2016, 5, .	6.0	91
26	Seeing Is Believing: Sorting Out Signaling Events at the Immunological Synapse. Journal of Immunology, 2015, 194, 4059-4060.	0.8	1
27	The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility. Journal of Cell Biology, 2015, 208, 457-473.	5.2	146
28	F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. Journal of Cell Biology, 2015, 208, 475-491.	5.2	167
29	Regulatory T Cells Require TCR Signaling for Their Suppressive Function. Journal of Immunology, 2015, 194, 4362-4370.	0.8	53
30	CRK proteins selectively regulate T cell migration into inflamed tissues. Journal of Clinical Investigation, 2015, 125, 1019-1032.	8.2	46
31	Discs Large Homolog 1 Splice Variants Regulate p38 –Dependent and –Independent Effector Functions in CD8+ T Cells. PLoS ONE, 2015, 10, e0133353.	2.5	11
32	Actin foci facilitate activation of the phospholipase C-Î ³ in primary T lymphocytes via the WASP pathway. ELife, 2015, 4, .	6.0	200
33	Coordinate control of cytoskeletal remodeling and calcium mobilization during Tâ€cell activation. Immunological Reviews, 2013, 256, 80-94.	6.0	69
34	Controversy and consensus regarding myosin II function at the immunological synapse. Current Opinion in Immunology, 2013, 25, 300-306.	5.5	47
35	Ezrin/Radixin/Moesin Proteins and Flotillins Cooperate to Promote Uropod Formation in T Cells. Frontiers in Immunology, 2013, 4, 84.	4.8	47
36	Cytoskeletal function in the immune system. Immunological Reviews, 2013, 256, 5-9.	6.0	14

#	Article	IF	CITATIONS
37	Ezrin and Moesin Are Required for Efficient T Cell Adhesion and Homing to Lymphoid Organs. PLoS ONE, 2013, 8, e52368.	2.5	27
38	The Cytoskeletal Adaptor Protein IQGAP1 Regulates TCR-Mediated Signaling and Filamentous Actin Dynamics. Journal of Immunology, 2012, 188, 6135-6144.	0.8	43
39	Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF–triggered granulopoiesis. Nature Medicine, 2012, 18, 1550-1559.	30.7	70
40	Cutting Edge: Asymmetric Memory T Cell Division in Response to Rechallenge. Journal of Immunology, 2012, 188, 4145-4148.	0.8	79
41	F-actin polymerization and retrograde flow drive sustained PLCÎ ³ 1 signaling during T cell activation. Journal of Cell Biology, 2012, 197, 775-787.	5.2	203
42	Asymmetric B Cell Division in the Germinal Center Reaction. Science, 2012, 335, 342-344.	12.6	101
43	Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation. PLoS ONE, 2012, 7, e32398.	2.5	55
44	Characterization of In Vivo Dlg1 Deletion on T Cell Development and Function. PLoS ONE, 2012, 7, e45276.	2.5	26
45	The Actin Regulatory Protein HS1 Is Required for Antigen Uptake and Presentation by Dendritic Cells. Journal of Immunology, 2011, 187, 5952-5963.	0.8	21
46	Lymphocyte Signaling Converges on Microtubules. Immunity, 2011, 34, 825-827.	14.3	8
47	Hematopoietic Lineage Cell-Specific Protein 1 Functions in Concert with the Wiskott–Aldrich Syndrome Protein To Promote Podosome Array Organization and Chemotaxis in Dendritic Cells. Journal of Immunology, 2011, 186, 4805-4818.	0.8	43
48	Fascin1 Promotes Cell Migration of Mature Dendritic Cells. Journal of Immunology, 2011, 186, 2850-2859.	0.8	74
49	Ezrin Is Highly Expressed in Early Thymocytes, but Dispensable for T Cell Development in Mice. PLoS ONE, 2010, 5, e12404.	2.5	8
50	New G-CSF-Dependent Signaling Pathway and Its Role In Patients with Severe Congenital Neutropenia and Acute Myeloid Leukemia. Blood, 2010, 116, 385-385.	1.4	0
51	Ezrin and Moesin Function Together to Promote T Cell Activation. Journal of Immunology, 2009, 182, 1021-1032.	0.8	116
52	Hematopoietic Lineage Cell-Specific Protein 1 Is Recruited to the Immunological Synapse by IL-2-Inducible T Cell Kinase and Regulates Phospholipase Cγ1 Microcluster Dynamics during T Cell Spreading. Journal of Immunology, 2009, 183, 7352-7361.	0.8	41
53	Formation of STIM and Orai complexes: puncta and distal caps. Immunological Reviews, 2009, 231, 148-159.	6.0	31
54	Integrins Put the Brakes on Microcluster Dynamics at the Immunological Synapse. Immunity, 2008, 28, 732-734.	14.3	4

#	Article	IF	CITATIONS
55	The Actin Cytoskeleton in T Cell Activation. Annual Review of Immunology, 2008, 26, 233-259.	21.8	284
56	The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood, 2008, 112, 111-119.	1.4	71
57	T-cell-receptor-dependent actin regulatory mechanisms. Journal of Cell Science, 2007, 120, 723-730.	2.0	70
58	PI3K regulates pleckstrin-2 in T-cell cytoskeletal reorganization. Blood, 2007, 109, 1147-1155.	1.4	36
59	HS1 Functions as an Essential Actin-Regulatory Adaptor Protein at the Immune Synapse. Immunity, 2006, 24, 741-752.	14.3	203
60	Regulation of Cytoskeletal Dynamics at the Immune Synapse: New Stars Join the Actin Troupe. Traffic, 2006, 7, 1451-1460.	2.7	67
61	The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation. Current Biology, 2006, 16, 24-34.	3.9	225
62	Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nature Immunology, 2005, 6, 261-270.	14.5	137
63	Kinase-Independent Functions for Itk in TCR-Induced Regulation of Vav and the Actin Cytoskeleton. Journal of Immunology, 2005, 174, 1385-1392.	0.8	121
64	Deficiency of ADAP/Fyb/SLAP-130 Destabilizes SKAP55 in Jurkat T Cells. Journal of Biological Chemistry, 2005, 280, 23576-23583.	3.4	52
65	CD43 Regulation of T Cell Activation Is Not through Steric Inhibition of T Cell–APC Interactions but through an Intracellular Mechanism. Journal of Experimental Medicine, 2004, 199, 1277-1283.	8.5	42
66	Differential Roles for Wiskott-Aldrich Syndrome Protein in Immune Synapse Formation and IL-2 Production. Journal of Immunology, 2004, 173, 1658-1662.	0.8	111
67	Ezrin regulates NHE3 translocation and activation after Na+-glucose cotransport. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9485-9490.	7.1	82
68	Na+-glucose cotransport triggers ezrin phosphorylation via a P38 MAP kinase-dependent pathway. Gastroenterology, 2003, 124, A312-A313.	1.3	0
69	Itk Functions to Control Actin Polymerization at the Immune Synapse through Localized Activation of Cdc42 and WASP. Current Biology, 2003, 13, 1619-1624.	3.9	121
70	SLP-76 Coordinates Nck-Dependent Wiskott-Aldrich Syndrome Protein Recruitment with Vav-1/Cdc42-Dependent Wiskott-Aldrich Syndrome Protein Activation at the T Cell-APC Contact Site. Journal of Immunology, 2003, 171, 1360-1368.	0.8	158
71	Microvillar loss: when your pERM won't hold. Blood, 2003, 102, 3856-3857.	1.4	2
72	Molecular Ordering of the Initial Signaling Events of CD95. Molecular and Cellular Biology, 2002, 22, 207-220.	2.3	367

#	Article	IF	CITATIONS
73	The regulation of actin remodeling during T-cell-APC conjugate formation. Immunological Reviews, 2002, 186, 90-99.	6.0	89
74	The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunological Reviews, 2002, 189, 111-122.	6.0	84
75	WASP Recruitment to the T Cell:APC Contact Site Occurs Independently of Cdc42 Activation. Immunity, 2001, 15, 249-259.	14.3	144
76	ERM-Dependent Movement of CD43 Defines a Novel Protein Complex Distal to the Immunological Synapse. Immunity, 2001, 15, 739-750.	14.3	239
77	A standard for calibration and shading correction of a fluorescence microscope. Cytometry, 2001, 44, 309-316.	1.8	106
78	Superantigen-Induced T Cell:B Cell Conjugation Is Mediated by LFA-1 and Requires Signaling Through Lck, But Not ZAP-70. Journal of Immunology, 2001, 167, 5708-5718.	0.8	109
79	Spatial Organization of Signal Transduction Molecules in the NK Cell Immune Synapses During MHC Class I-Regulated Noncytolytic and Cytolytic Interactions. Journal of Immunology, 2001, 167, 4358-4367.	0.8	161
80	Myosin Va Bound to Phagosomes Binds to F-Actin and Delays Microtubule-dependent Motility. Molecular Biology of the Cell, 2001, 12, 2742-2755.	2.1	91
81	Physiological Control of Smooth Muscle-specific Gene Expression through Regulated Nuclear Translocation of Serum Response Factor. Journal of Biological Chemistry, 2000, 275, 30387-30393.	3.4	104
82	The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 113-126.	4.1	99
83	Molecular Requirements for Bi-directional Movement of Phagosomes Along Microtubules. Journal of Cell Biology, 1997, 137, 113-129.	5.2	212
84	Overexpression of the Dynamitin (p50) Subunit of the Dynactin Complex Disrupts Dynein-dependent Maintenance of Membrane Organelle Distribution. Journal of Cell Biology, 1997, 139, 469-484.	5.2	598
85	In search of membrane receptors for microtubule-based motors — is kinectin a kinesin receptor?. Trends in Cell Biology, 1996, 6, 127-131.	7.9	32
86	The Importance of Microtubules in Determination of Shape and Intracellular Distribution of Peroxisomes. Annals of the New York Academy of Sciences, 1996, 804, 669-671.	3.8	9
87	Microtubule-associated Protein-dependent Binding of Phagosomes to Microtubules. Journal of Biological Chemistry, 1996, 271, 3803-3811.	3.4	73
88	Gaining insight into a complex organelle, the phagosome, using two-dimensional gel electrophoresis. Electrophoresis, 1995, 16, 2249-2257.	2.4	29
89	Microtubule Dependent Transport and Fusion of Phagosomes with the Endocytic Pathway. , 1995, , 211-222.		1
90	Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature, 1994, 372, 801-803.	27.8	180