

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6307990/publications.pdf Version: 2024-02-01

Vilke

#	Article	IF	CITATIONS
1	Silver-based nanocomposite for fabricating high performance value-added cotton. Cellulose, 2022, 29, 723-750.	2.4	16
2	The immunoâ€reactivity of polypseudorotaxane functionalized magnetic CDMNPâ€PEGâ€CD nanoparticles. Journal of Cellular and Molecular Medicine, 2021, 25, 561-574.	1.6	10
3	Role of Stiffness versus Wettability in Regulating Cell Behaviors on Polymeric Surfaces. ACS Biomaterials Science and Engineering, 2020, 6, 912-922.	2.6	17
4	Preparation and Characterization of Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 627 Td (glycol)-block-F Copolymers. Macromolecular Research, 2020, 28, 310-318.	oly(3-hyd 1.0	roxybutyrate-0 4
5	Dual-Function Antibacterial Micelle <i>via</i> Self-Assembling Block Copolymers with Various Antibacterial Nanoparticles. ACS Omega, 2020, 5, 8523-8533.	1.6	13
6	Synthetic routes of the reduced graphene oxide. Chemical Papers, 2020, 74, 3767-3783.	1.0	56
7	Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. Materials Science and Engineering C, 2019, 99, 159-170.	3.8	10
8	Heparinized Polyurethane Surface Via a One-Step Photografting Method. Molecules, 2019, 24, 758.	1.7	5
9	Anchoring TGF-Î ² 1 on biomaterial surface via affinitive interactions: Effects on spatial structures and bioactivity. Colloids and Surfaces B: Biointerfaces, 2018, 166, 254-261.	2.5	10
10	Cells may feel a hard substrate even on a grafted layer of soft hydrogel. Journal of Materials Chemistry B, 2018, 6, 1734-1743.	2.9	9
11	The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment. RSC Advances, 2018, 8, 4239-4248.	1.7	38
12	Cell-loaded carboxymethylcellulose microspheres sustain viability and proliferation of ATDC5 cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 140-151.	1.9	9
13	Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. Materials Science and Engineering C, 2018, 83, 67-77.	3.8	14
14	Surface Modification of Polyhydroxyalkanoates toward Enhancing Cell Compatibility and Antibacterial Activity. Macromolecular Materials and Engineering, 2017, 302, 1700258.	1.7	28
15	Analysis of the Expression of Angioarchitecture-related Factors in Patients with Cerebral Arteriovenous Malformation. Chinese Medical Journal, 2017, 130, 2465-2472.	0.9	4
16	Function of sustained released resveratrol on IL-1 <i>β</i> -induced hBMSC MMP13 secretion inhibition and chondrogenic differentiation promotion. Journal of Biomaterials Applications, 2016, 30, 930-939.	1.2	15
17	Comparative degradation study of surface-modified polyacrylamide/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes. Polymer Science - Series B, 2015, 57, 538-546.	0.3	5
18	PHBV/PAM Scaffolds with Local Oriented Structure through UV Polymerization for Tissue Engineering. BioMed Research International, 2014, 2014, 1-9.	0.9	14

Yu Ke

#	Article	IF	CITATIONS
19	Thermal and inÂvitro degradation properties of the NH2-containing PHBV films. Polymer Degradation and Stability, 2014, 105, 59-67.	2.7	15
20	Size controlling of monodisperse carboxymethyl cellulose microparticles via a microfluidic process. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
21	Biomimetic Ca-P Coatings on Polyacrylic Acid Modified Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Films. Soft Materials, 2013, 11, 448-456.	0.8	3
22	Recent Patents on Quantum Dot Engineering for Biomedical Application. Recent Patents on Biomedical Engineering, 2012, 5, 223-234.	0.5	3
23	Microfluidic-Assisted Fabrication of Nanoparticles for Nanomedicine Application. Recent Patents on Nanomedicine, 2012, 1, 109-122.	0.5	0
24	Bioactive surface modification on amide-photografted poly(3-hydroxybutyrate- co -3-hydroxyvalerate). Biomedical Materials (Bristol), 2011, 6, 025007.	1.7	6
25	Surface modification of PHBV films with different functional groups: Thermal properties and <i>in vitro</i> degradation. Journal of Applied Polymer Science, 2010, 118, 390-398.	1.3	16
26	Surface Modification of PHBV Scaffolds via UV Polymerization to Improve Hydrophilicity. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1589-1602.	1.9	15
27	Surface engineering of PHBV by covalent collagen immobilization to improve cell compatibility. Journal of Biomedical Materials Research - Part A, 2009, 88A, 616-627.	2.1	40
28	Fabrication and characterization of a PAM modified PHBV/BG scaffold. Science Bulletin, 2009, 54, 2940-2946.	1.7	2
29	Photografting polymerization of polyacrylamide on poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) films. II. Wettability and crystallization behaviors of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate)â€ <i>graft</i> â€polyacrylamide films. Journal of Appl Polymer Science. 2008, 107, 3765-3772.	ied ^{1,3}	13
30	Photografting polymerization of polyacrylamide on PHBV films (I). Journal of Applied Polymer Science, 2007, 104, 4088-4095.	1.3	39