Simona Ferrando

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6307904/publications.pdf
Version: 2024-02-01

An explosive component in a December 2020 Milan earthquake suggests outgassing of deeply recycled 1 An explosive component in a December 2020 Milan earth
Interlaboratory Application of Raman CO2 Densimeter Equations: Experimental Procedure and 2 Statistical Analysis Using Bootstrapped Confidence Intervals. Applied Spectroscopy, 2021, 75,

Morphological and chemical properties of fibrous antigorite from lateritic deposit of New Caledonia
$8.0 \quad 9$
$3 \begin{aligned} & \text { Morphological and chemical properties of fibrous antigorite from lateritic deposit of Nev } \\ & \text { in view of hazard assessment. Science of the Total Environment, } 2021,777,146185 .\end{aligned}$
9

Tiny, glassy, and rapidly trapped: The nano-sized planktic diatoms in Messinian (late Miocene) gypsum.
$4.4 \quad 12$
Geology, 2021, 49, 1369-1374.

Synâ€rift hydrothermal circulation in the Mesozoic carbonates of the western Adriatic continental
5 palaeomargin (Western Southalpine Domain, NW Italy). Basin Research, 2021, 33, 3045-3076.
2.73

Thermodynamic analysis of HP-UHP fluid inclusions: The solute load and chemistry of metamorphic
fluids. Geochimica Et Cosmochimica Acta, 2021, 315, 207-229.
3.9

13

7 A calibrated database of Raman spectra for natural silicate glasses: implications for modelling melt
physical properties. Journal of Raman Spectroscopy, 2020, 51, 1822-1838.
2.5

16

Partial melting due to breakdown of an epidoteâ $€$ group mineral during exhumation of
8 ultrahighâ€pressure eclogite: An example from the Northâ€East Greenland Caledonides. Journal of
$3.4 \quad 26$ Metamorphic Geology, 2019, 37, 15-39.

Potential Fossilized Sulfide-Oxidizing Bacteria in the Upper Miocene Sulfur-Bearing Limestones From
$9 \begin{aligned} & \text { Potential Fossilized Sulfide-Oxidizing Bacteria in the Upper Miocene Sulfur-Bearing Limestones From } \\ & \text { the Lorca Basin (SE Spain): Paleoenvironmental Implications. Frontiers in Microbiology, 2019, 10, } 1031 .\end{aligned}$

Gradual and selective trace-element enrichment in slab-released fluids at sub-arc depths. Scientific
$10 \quad \begin{aligned} & \text { Gradual and selective trace } \\ & \text { Reports, 2019, 9, } 16393 .\end{aligned}$
3.3

17

> 11 Whatâ $\epsilon^{T M}$ s in the sandwich? New Pâ $€^{\text {"T T } T \text { constraints for the (U)HP nappe stack of southern Dora-Maira }}$
> Massif (Western Alps). European Journal of Mineralogy, 2019, 31, 665-683.

12 The Role of Halogens in the Lithospheric Mantle. Springer Geochemistry, 2018, , 805-845.
$0.1 \quad 6$

13 Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate
trends. Scientific Reports, 2018, 8, 4740.

Evidence of large-scale Mesozoic detachments preserved in the basement of the Southern Alps (northern Lago di Como area). Italian Journal of Geosciences, 2018, 137, 283-293.

5
A possible new UHP unit in the Western Alps as revealed by ancient Roman quern-stones from
Costigliole Saluzzo, Italy. European Journal of Mineralogy, 2016, 28, 1215-1232.

$20 \quad$| Stone materials used for monumental buildings in the historical centre of Turin (NW Italy): |
| :--- |
| architectonical survey and petrographic characterization of Via Roma. Geological Society Sp | Publication, 2015, 407, 201-218.

21	The chemical behavior of fluids released during deep subduction based on fluid inclusions. American Mineralogist, 2015, 100, 352-377.	1.9	113
22	Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria?. Geology, 2015, 43, 855-858.	4.4	36
23	The Monviso Massif and the Cottian Alps as Symbols of the Alpine Chain and Geological Heritage in Piemonte, Italy. Geoheritage, 2015, 7, 65-84.	2.8	9

24 The Monviso Ophiolite Geopark, a Symbol of the Alpine Chain and Geological Heritage in Piemonte, Italy. , 2015, , 239-243.
25 The Stone Bridges on the Po River at Turin (NW Italy): A Scientific Dissemination Approach for the Development of Urban Geological Heritage. , 2015, , 207-211.Did Late Miocene (Messinian) gypsum precipitate from evaporated marine brines? Insights from thePiedmont Basin (Italy). Geology, 2014, 42, 179-182.2
Fragments of the Western Alpine Chain as Historic Ornamental Stones in Turin (Italy): Enhancement of
$27 \quad$ Urban Geological Heritage through Geotourism. Geoheritage, 2014, 6, 41-55.

2Flocculent layers and bacterial mats in the mudstone interbeds of the Primary Lower Gypsum unit28 (Tertiary Piedmont basin, NW Italy): Archives of palaeoenvironmental changes during the Messiniansalinity crisis. Marine Geology, 2014, 355, 71-87.
29 Crust-mantle interactions during subduction of oceanic \& continental crust. Geological Field Trips, 2014, 6, 1-73.$2.8 \quad 38$

Mgâ€metasomatism of metagranitoids from the Alps: genesis and possible tectonic scenarios. Terra
2.1

23
31 Water content and nature of solutes in shallow-mantle fluids from fluid inclusions. Earth and 4.4 50
Planetary Science Letters, 2012, 351-352, 70-83.Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy),

Chlorine-rich metasomatic H2Oâ€"CO2 fluids in amphibole-bearing peridotites from Injibara (Lake Tana) Tj ETQq0 00 rgBT /Overlock 10
flood basalts. Geochimica Et Cosmochimica Acta, 2010, 74, 3023-3039.
Metasomatism of continental crust during subduction: the UHP whiteschists from the Southern
Doraâ€Maira Massif (Italian Western Alps). Journal of Metamorphic Geology, 2009, 27, 739-756.

Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western) Tj ETQq0 00_{1} rgBT /Overlock 10 Tt

39	Intermediate Alkali-Alumino-silicate Aqueous Solutions Released by Deeply Subducted Continental Crust: Fluid Evolution in UHP OH-rich Topaz-Kyanite Quartzites from Donghai (Sulu, China). Journal of Petrology, 2007, 48, 1219-1241.	2.8	62
40	Fluid evolution from metamorphic peak to exhumation in Himalayan granulitised eclogites, Ama Drime range, southern Tibet. European Journal of Mineralogy, 2007, 19, 439-461.	1.3	10
41	Multiphase solid inclusions in UHP rocks (Su-Lu, China): Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chemical Geology, 2005, 223, 68-81.	3.3	141
42	Fluid-Rock Interaction in UHP Phengite-Kyanite-Epidote Eclogite from the Sulu Orogen, Eastern China. International Geology Review, 2005, 47, 750-774.	2.1	30
43	X-ray single-crystal structure refinement of an OH-rich topaz from Sulu UHP terrane (Eastern China) Structural foundation of the correlation between cell parameters and fluorine content. European Journal of Mineralogy, 2003, 15, 875-881.	1.3	28
44	Paleo-European crust of the Italian Western Alps: Geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles Rouges and Maures-Tanneron Massifs. Journal of the Virtual Explorer, 0, 36, .	0.0	10
45	IT applications for sharing geoheritage information: the example of the geological and geomorphological trail in the Monviso massif (NW Italy). Rendiconti Online Societa Geologica Italiana, 0, 34, 85-88.	0.3	1

