Andrea Dunaif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6307735/publications.pdf

Version: 2024-02-01

57 papers 8,477 citations

33 h-index 54 g-index

64 all docs

64 docs citations

64 times ranked 6169 citing authors

#	Article	IF	CITATIONS
1	Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertility and Sterility, 2012, 97, 28-38.e25.	1.0	1,494
2	Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocrine Reviews, 2012, 33, 981-1030.	20.1	1,301
3	Polycystic ovary syndrome. Nature Reviews Disease Primers, 2016, 2, 16057.	30.5	1,004
4	Characterization of Groups of Hyperaiidrogenic Women with Acanthosis Nigricans, Impaired Glucose Tolerance, and/or Hyperinsulinemia*. Journal of Clinical Endocrinology and Metabolism, 1987, 65, 499-507.	3.6	567
5	Evidence for Distinctive and Intrinsic Defects in Insulin Action in Polycystic Ovary Syndrome. Diabetes, 1992, 41, 1257-1266.	0.6	459
6	Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genetics, 2018, 14, e1007813.	3.5	341
7	Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nature Communications, 2015, 6, 7502.	12.8	314
8	Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2963.	3.6	188
9	Insulin Resistance in the Sisters of Women with Polycystic Ovary Syndrome: Association with Hyperandrogenemia Rather Than Menstrual Irregularity. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2128-2133.	3.6	183
10	Replication of association of <i>DENND1A</i> and <i>THADA</i> variants with polycystic ovary syndrome in European cohorts. Journal of Medical Genetics, 2012, 49, 90-95.	3.2	165
11	Enhanced Mitogenic Signaling in Skeletal Muscle of Women With Polycystic Ovary Syndrome. Diabetes, 2006, 55, 751-759.	0.6	144
12	Elevated Dehydroepiandrosterone Sulfate Levels as the Reproductive Phenotype in the Brothers of Women with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2134-2138.	3.6	134
13	Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Medicine, 2020, 17, e1003132.	8.4	134
14	Polycystic Ovaries Are Common in Women with Hyperandrogenic Chronic Anovulation but Do Not Predict Metabolic or Reproductive Phenotype. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2571-2579.	3.6	122
15	Evidence for Chromosome 2p16.3 Polycystic Ovary Syndrome Susceptibility Locus in Affected Women of European Ancestry. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E185-E190.	3.6	121
16	Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E262-E268.	3.5	113
17	Family-Based Analysis of Candidate Genes for Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2306-2315.	3.6	113
18	Identification of a Polycystic Ovary Syndrome Susceptibility Variant in Fibrillin-3 and Association with a Metabolic Phenotype. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4191-4198.	3.6	103

#	Article	IF	Citations
19	Ethnicity and Polycystic Ovary Syndrome are Associated With Independent and Additive Decreases in Insulin Action in Caribbean-Hispanic Women. Diabetes, 1993, 42, 1462-1468.	0.6	101
20	Infants of Women with Polycystic Ovary Syndrome Have Lower Cord Blood Androstenedione and Estradiol Levels. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2180-2186.	3.6	101
21	Evidence for metabolic and reproductive phenotypes in mothers of women with polycystic ovary syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7030-7035.	7.1	95
22	Renaming PCOSâ€"A Two-State Solution. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4325-4328.	3.6	90
23	Drug Insight: insulin-sensitizing drugs in the treatment of polycystic ovary syndrome—a reappraisal. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 272-283.	2.8	86
24	Pathogenic Anti-MÃ $\frac{1}{4}$ llerian Hormone Variants in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2862-2872.	3.6	80
25	Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocrine Reviews, 2022, 43, 927-965.	20.1	7 5
26	Long non-coding RNA LINC-01572:28 inhibits granulosa cell growth via a decrease in p27 (Kip1) degradation in patients with polycystic ovary syndrome. EBioMedicine, 2018, 36, 526-538.	6.1	72
27	Perspectives in Polycystic Ovary Syndrome: From Hair to Eternity. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 759-768.	3.6	71
28	Absence of insulin receptor gene mutations in three insulin-resistant women with the polycystic ovary syndrome. Metabolism: Clinical and Experimental, 1994, 43, 1568-1574.	3 . 4	63
29	High Prevalence of Metabolic Syndrome in First-Degree Male Relatives of Women with Polycystic Ovary Syndrome Is Related to High Rates of Obesity. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4361-4366.	3.6	59
30	Insulin resistance in women with polycystic ovary syndrome. Fertility and Sterility, 2006, 86, S13-S14.	1.0	56
31	Associations of Birthweight and Gestational Age with Reproductive and Metabolic Phenotypes in Women with Polycystic Ovarian Syndrome and Their First-Degree Relatives. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 789-799.	3.6	52
32	Family-Based Quantitative Trait Meta-Analysis Implicates Rare Noncoding Variants in DENND1A in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3835-3850.	3.6	51
33	Evidence for Increased 5î±-Reductase Activity During Early Childhood in Daughters of Women With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2069-2075.	3.6	42
34	A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide Association Studies. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1918-1936.	3.6	40
35	The HMGA2-IMP2 Pathway Promotes Granulosa Cell Proliferation in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1049-1059.	3.6	38
36	Diagnosis of Polycystic Ovary Syndrome. Endocrinology and Metabolism Clinics of North America, 2021, 50, 11-23.	3.2	35

3

#	Article	IF	CITATIONS
37	Increased antim $\tilde{A}\frac{1}{4}$ llerian hormone levels and other reproductive endocrine changes in adult male relatives of women with polycystic ovary syndrome. Fertility and Sterility, 2016, 106, 50-55.	1.0	33
38	Persistent Apparent Pancreatic \hat{l}^2 -Cell Defects in Premenarchal PCOS Relatives. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3855-3862.	3.6	30
39	Distinctive Reproductive Phenotypes in Peripubertal Girls at Risk for Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3355-3361.	3.6	30
40	The Hirsute Woman: Challenges in Evaluation and Management. Endocrine Practice, 2011, 17, 807-818.	2.1	22
41	Genes, aging and sleep apnea in polycystic ovary syndrome. Nature Reviews Endocrinology, 2012, 8, 72-74.	9.6	22
42	The contribution of rare genetic variants to the pathogenesis of polycystic ovary syndrome. Current Opinion in Endocrine and Metabolic Research, 2020, 12, 26-32.	1.4	21
43	An Exercise Intervention for South Asian Mothers with Risk Factors for Diabetes. Translational Journal of the American College of Sports Medicine, 2016, 1, 52-59.	0.6	19
44	Hyperandrogenemia is neceesary but not sufficient for polycystic ovary syndrome. Fertility and Sterility, 2003, 80, 262-263.	1.0	15
45	11-Oxygenated C19 Steroids Do Not Distinguish the Hyperandrogenic Phenotype of PCOS Daughters from Girls with Obesity. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3903-e3909.	3.6	15
46	Parent-of-Origin Effects on Glucose Homeostasis in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2961-2966.	3.6	14
47	Exaggerated glucagon responses to hypoglycemia in women with polycystic ovary syndrome. Metabolism: Clinical and Experimental, 2017, 71, 125-131.	3.4	9
48	Adjusting antimüllerian hormone levels for age and body mass index improves detection of polycystic ovary syndrome. Fertility and Sterility, 2020, 113, 876-884.e2.	1.0	7
49	Prevalence of glucose intolerance in free-rangingMacaca fascicularis of Mauritius. American Journal of Primatology, 1987, 13, 435-442.	1.7	4
50	Using Polygenic Scores in Social Science Research: Unraveling Childlessness. Frontiers in Sociology, 2019, 4, 74.	2.0	4
51	Hyperandrogenemia is Common in Asymptomatic Women and is Associated with Increased Metabolic Risk. Obesity, 2020, 28, 106-113.	3.0	4
52	Variation analysis of anti-MÃ $\frac{1}{4}$ llerian hormone gene in Chinese women with polycystic ovary syndrome. Endocrine, 2021, 72, 287-293.	2.3	4
53	OUP accepted manuscript. Human Reproduction, 2022, , .	0.9	2
54	Title is missing!. , 2020, 17, e1003132.		0

Andrea Dunaif

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 17, e1003132.		O
56	Title is missing!. , 2020, 17, e1003132.		0
57	Title is missing!. , 2020, 17, e1003132.		О