
Stephen J Ormerod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6307184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	4.7	1,766
2	Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 2001, 38, 921-931.	1.9	1,359
3	Multiple stressors in freshwater ecosystems. Freshwater Biology, 2010, 55, 1-4.	1.2	717
4	Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience, 2020, 70, 330-342.	2.2	553
5	New paradigms for modelling species distributions?. Journal of Applied Ecology, 2004, 41, 193-200.	1.9	465
6	Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology, 2007, 13, 942-957.	4.2	390
7	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	3.4	336
8	Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecological Modelling, 1999, 120, 337-347.	1.2	329
9	Effects on aquatic ecosystems. Journal of Photochemistry and Photobiology B: Biology, 1998, 46, 53-68.	1.7	313
10	Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment, 2019, 646, 68-74.	3.9	293
11	Integrating ecology with hydromorphology: a priority for river science and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 2009, 19, 113-125.	0.9	271
12	A catchmentâ€scale perspective of plastic pollution. Global Change Biology, 2019, 25, 1207-1221.	4.2	260
13	The continuing challenges of testing species distribution models. Journal of Applied Ecology, 2005, 42, 720-730.	1.9	256
14	Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology, 1999, 36, 734-747.	1.9	254
15	Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology, 2004, 41, 934-950.	1.9	238
16	Managing aquatic ecosystems and water resources under multiple stress — An introduction to the MARS project. Science of the Total Environment, 2015, 503-504, 10-21.	3.9	231
17	Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Communications Biology, 2018, 1, 4.	2.0	219
18	The ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye in relation to environmental factors. Freshwater Biology, 1987, 17, 533-546.	1.2	183

#	Article	IF	CITATIONS
19	Climate change and water in the UK – past changes and future prospects. Progress in Physical Geography, 2015, 39, 6-28.	1.4	178
20	Grasslands, grazing and biodiversity: editors' introduction. Journal of Applied Ecology, 2001, 38, 233-237.	1.9	169
21	Improving the Quality of Distribution Models for Conservation by Addressing Shortcomings in the Field Collection of Training Data. Conservation Biology, 2003, 17, 1601-1611.	2.4	154
22	Trends in water quality and discharge confound longâ€ŧerm warming effects on river macroinvertebrates. Freshwater Biology, 2009, 54, 388-405.	1.2	153
23	Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice. Science of the Total Environment, 2010, 408, 4150-4164.	3.9	150
24	Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminium. Freshwater Biology, 1987, 17, 341-356.	1.2	149
25	Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography, 2013, 22, 796-805.	2.7	142
26	Estimating the size distribution of plastics ingested by animals. Nature Communications, 2020, 11, 1594.	5.8	132
27	Comparing the responses of diatoms and macro- invertebrates to metals in upland streams of Wales and Cornwall. Freshwater Biology, 2002, 47, 1752-1765.	1.2	131
28	The effects of climatic fluctuations and extreme events on running water ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150274.	1.8	131
29	Scaleâ€dependent effects of fine sediments on temperate headwater invertebrates. Freshwater Biology, 2009, 54, 203-219.	1.2	128
30	The influence of plantation forestry on the pH and aluminium concentration of upland welsh streams: A re-examination. Environmental Pollution, 1989, 62, 47-62.	3.7	113
31	Community persistence among stream invertebrates tracks the North Atlantic Oscillation. Journal of Animal Ecology, 2001, 70, 987-996.	1.3	113
32	Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Global Change Biology, 2016, 22, 1769-1778.	4.2	111
33	The Influence of Riparian Management on the Habitat Structure and Macroinvertebrate Communities of Upland Streams Draining Plantation Forests. Journal of Applied Ecology, 1993, 30, 13.	1.9	107
34	Evaluating riparian solutions to multiple stressor problems in river ecosystems — A conceptual study. Water Research, 2018, 139, 381-394.	5.3	105
35	Testing large-scale hypotheses using surveys: the effects of land use on the habitats, invertebrates and birds of Himalayan rivers. Journal of Applied Ecology, 2000, 37, 756-770.	1.9	104
36	Toxicity of proton–metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquatic Toxicology, 2010, 100, 112-119.	1.9	101

#	Article	IF	CITATIONS
37	Altitudinal trends in the diatoms, bryophytes, macroinvertebrates and fish of a Nepalese river system. Freshwater Biology, 1994, 32, 309-322.	1.2	100
38	Lowâ€level effects of inert sediments on temperate stream invertebrates. Freshwater Biology, 2010, 55, 476-486.	1.2	100
39	Egg mass and shell thickness in dippers Cinclus cinclus in relation to stream acidity in Wales and Scotland. Environmental Pollution, 1988, 55, 107-121.	3.7	99
40	The Ecology of Dippers Cinclus cinclus in Relation to Stream Acidity in Upland Wales: Breeding Performance, Calcium Physiology and Nestling Growth. Journal of Applied Ecology, 1991, 28, 419.	1.9	99
41	Restoration and recovery from acidification in upland Welsh streams over 25 years. Journal of Applied Ecology, 2009, 46, 164-174.	1.9	97
42	Restoration in applied ecology: editor's introduction. Journal of Applied Ecology, 2003, 40, 44-50.	1.9	96
43	Long-term effects of catchment liming on invertebrates in upland streams. Freshwater Biology, 2002, 47, 161-171.	1.2	95
44	Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications, 2011, 27, 257-267.	0.7	95
45	Current issues with fish and fisheries: editor's overview and introduction. Journal of Applied Ecology, 2003, 40, 204-213.	1.9	94
46	Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolution, 2006, 40, 370-382.	1.2	94
47	Endocrine disruption in aquatic systems: upâ€scaling research to address ecological consequences. Biological Reviews, 2018, 93, 626-641.	4.7	93
48	Largeâ€scale, longâ€ŧerm trends in <scp>B</scp> ritish river macroinvertebrates. Global Change Biology, 2012, 18, 2184-2194.	4.2	89
49	Large-scale ecology and hydrology: an introductory perspective from the editors of the Journal of Applied Ecology. Journal of Applied Ecology, 2000, 37, 1-5.	1.9	88
50	Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment, 2018, 645, 1598-1616.	3.9	87
51	Acidic episodes retard the biological recovery of upland British streams from chronic acidification. Global Change Biology, 2007, 13, 2439-2452.	4.2	86
52	The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Research and Applications, 2019, 35, 107-120.	0.7	86
53	Editors' Introduction: Birds and Agriculture. Journal of Applied Ecology, 2000, 37, 699-705.	1.9	84
54	Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology, 2003, 48, 2065-2084.	1.2	84

#	Article	IF	CITATIONS
55	A golden age of river restoration science?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2004, 14, 543-549.	0.9	78
56	Climate change, river conservation and the adaptation challenge. Aquatic Conservation: Marine and Freshwater Ecosystems, 2009, 19, 609-613.	0.9	78
57	Diatoms as indicators of river quality in the Nepalese Middle Hills with consideration of the effects of habitat-specific sampling. Freshwater Biology, 1996, 36, 475-486.	1.2	77
58	The impact of acidification on macroinvertebrate assemblages in welsh streams: Towards an empirical model. Environmental Pollution, 1987, 46, 223-240.	3.7	74
59	Combined effects of habitat modification on trait composition and species nestedness in river invertebrates. Biological Conservation, 2010, 143, 2638-2646.	1.9	73
60	Food web transfer of plastics to an apex riverine predator. Global Change Biology, 2020, 26, 3846-3857.	4.2	73
61	Odonates as Indicators of Shallow Lake Restoration by Liming: Comparing Adult and Larval Responses. Restoration Ecology, 2004, 12, 439-446.	1.4	72
62	Macro-floral assemblages in upland Welsh streams in relation to acidity, and their importance to invertebrates. Freshwater Biology, 1987, 18, 545-557.	1.2	67
63	Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia, 2013, 700, 231-244.	1.0	66
64	METHODOLOGICAL INSIGHTS: Increasing the value of principal components analysis for simplifying ecological data: a case study with rivers and river birds. Journal of Applied Ecology, 2005, 42, 487-497.	1.9	65
65	Evidence for the role of climate in the local extinction of a cool-water triclad. Journal of the North American Benthological Society, 2010, 29, 1367-1378.	3.0	64
66	Dissolved Organic Nitrogen Regulation in Freshwaters. Journal of Environmental Quality, 2004, 33, 201-209.	1.0	63
67	The distribution of breeding dippers (Cinclus cinclus (L.); Aves) in relation to stream acidity in upland Wales. Freshwater Biology, 1986, 16, 501-507.	1.2	61
68	Microhabitat availability in Welsh moorland and forest streams as a determinant of macroinvertebrate distribution. Freshwater Biology, 1989, 22, 247-261.	1.2	61
69	Forests and the temperature of upland streams in Wales: a modelling exploration of the biological effects. Freshwater Biology, 1990, 24, 109-122.	1.2	61
70	Effects of episodic acidification on macroinvertebrate assemblages in Swiss Alpine streams. Freshwater Biology, 2003, 48, 1873-1885.	1.2	60
71	Exploitation of prey by a river bird, the dipper Cinclus cinclus (L.), along acidic and circumneutral streams in upland Wales. Freshwater Biology, 1991, 25, 105-116.	1.2	58
72	An outdoor mesocosm study to assess ecotoxicological effects of atrazine on a natural plankton community. Archives of Environmental Contamination and Toxicology, 1995, 29, 435.	2.1	57

#	Article	IF	CITATIONS
73	Meeting the ecological challenges of agricultural change: editors' introduction. Journal of Applied Ecology, 2003, 40, 939-946.	1.9	57
74	Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology, 2018, 99, 1316-1326.	1.5	57
75	Relationships between the physicochemistry and macroinvertebrates of British upland streams: the development of modelling and indicator systems for predicting fauna and detecting acidity. Freshwater Biology, 1990, 24, 463-480.	1.2	56
76	Juvenile salmonid populations in a temperate river system track synoptic trends in climate. Global Change Biology, 2010, 16, 3271-3283.	4.2	56
77	Anthropogenic modification disrupts species coâ€occurrence in stream invertebrates. Global Change Biology, 2014, 20, 51-60.	4.2	56
78	Classification and ordination of macroinvertebrate assemblages to predict stream acidity in upland Wales. Hydrobiologia, 1989, 171, 59-78.	1.0	55
79	Recognizing the importance of scale in the ecology and management of riverine fish. River Research and Applications, 2006, 22, 1143-1152.	0.7	54
80	Preliminary empirical models of the historical and future impact of acidification on the ecology of Welsh streams. Freshwater Biology, 1988, 20, 127-140.	1.2	53
81	Intensive sampling and transplantation experiments reveal continued effects of episodic acidification on sensitive stream invertebrates. Freshwater Biology, 2006, 51, 180-191.	1.2	52
82	The Constancy of Invertebrate Assemblages in Soft-Water Streams: Implications for the Prediction and Detection of Environmental Change. Journal of Applied Ecology, 1990, 27, 952.	1.9	51
83	Assessing the short-term response of stream diatoms to acidity using inter-basin transplantations and chemical diffusing substrates. Freshwater Biology, 2004, 49, 1072-1088.	1.2	51
84	Estimating safe concentrations of trace metals from inter-continental field data on river macroinvertebrates. Environmental Pollution, 2012, 166, 182-186.	3.7	51
85	Combining surveys of river habitats and river birds to appraise riverine hydromorphology. Freshwater Biology, 2007, 52, 2270-2284.	1.2	50
86	Beyond cool: adapting upland streams for climate change using riparian woodlands. Global Change Biology, 2016, 22, 310-324.	4.2	50
87	Twentyâ€five essential research questions to inform the protection and restoration of freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2632-2653.	0.9	49
88	The seasonal dynamics and persistence of stream macroinvertebrates in Nepal: do monsoon floods represent disturbance?. Freshwater Biology, 2000, 44, 581-594.	1.2	48
89	Rebalancing the philosophy of river conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2014, 24, 147-152.	0.9	47
90	Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae. Environmental Pollution, 2020, 263, 114425.	3.7	46

#	Article	IF	CITATIONS
91	The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Biological Conservation, 2004, 118, 455-466.	1.9	45
92	Improving bioâ€diagnostic monitoring using simple combinations of standard biotic indices. River Research and Applications, 2009, 25, 348-361.	0.7	45
93	Diet shifts during egg laying: Implications for measuring contaminants in bird eggs. Environmental Pollution, 2010, 158, 447-454.	3.7	45
94	The importance of acid episodes in determining faunal distributions in Welsh streams. Freshwater Biology, 1991, 25, 71-84.	1.2	44
95	The diet of breeding Dippers <i>Cinclus cinclus</i> and their nestlings in the catchment of the River Wye, midâ€Wales: a preliminary study by faecal analysis. Ibis, 1985, 127, 316-331.	1.0	44
96	Global patterns of diversity among the specialist birds of riverine landscapes. Freshwater Biology, 2002, 47, 695-709.	1.2	42
97	Insect dispersal does not limit the biological recovery of streams from acidification. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 375-383.	0.9	42
98	Linking ecological and hydromorphological data: approaches, challenges and future prospects for riverine science. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, S125.	0.9	42
99	Reappraising the effects of habitat structure on river macroinvertebrates. Freshwater Biology, 2013, 58, 2154-2167.	1.2	42
100	Is the breeding distribution of Dippers influenced by stream acidity?. Bird Study, 1985, 32, 32-39.	0.4	41
101	Restoring acidified streams in upland Wales: A modelling comparison of the chemical and biological effects of liming and reduced sulphate deposition. Environmental Pollution, 1990, 64, 67-85.	3.7	41
102	Aquatic bryophytes in Himalayan streams: testing a distribution model in a highly heterogeneous environment. Freshwater Biology, 1998, 40, 697-716.	1.2	41
103	Inter- and intraspecific differences in climatically mediated phenological change in coexisting Triturus species. Global Change Biology, 2006, 12, 1069-1078.	4.2	41
104	A diagnostic biotic index for assessing acidity in sensitive streams in Britain. Ecological Indicators, 2013, 24, 562-572.	2.6	40
105	The Challenges of Linking Ecosystem Services to Biodiversity. Advances in Ecological Research, 2016, 54, 87-134.	1.4	39
106	Global versus local change effects on a large European river. Science of the Total Environment, 2012, 441, 220-229.	3.9	38
107	The uptake of applied ecology. Journal of Applied Ecology, 2002, 39, 1-7.	1.9	37
108	Causes of episodic acidification in Alpine streams. Freshwater Biology, 2003, 48, 175-189.	1.2	37

#	Article	IF	CITATIONS
109	Communicating the value of ecology. Journal of Applied Ecology, 1999, 36, 847.	1.9	36
110	Applied issues with predators and predation: editor's introduction. Journal of Applied Ecology, 2002, 39, 181-188.	1.9	35
111	Persistent contaminants as potential constraints on the recovery of urban river food webs from gross pollution. Water Research, 2019, 163, 114858.	5.3	35
112	A systematic review of the effectiveness of liming to mitigate impacts of river acidification on fish and macro-invertebrates. Environmental Pollution, 2013, 179, 285-293.	3.7	34
113	The ecology of dippers Cinclus cinclus (L.) in relation to stream acidity in upland Wales: time-activity budgets and energy expenditure. Oecologia, 1990, 85, 271-280.	0.9	33
114	Macroinvertebrate communities in streams in the Himalaya, Nepal. Freshwater Biology, 1993, 30, 169-180.	1.2	33
115	The effects of catchment liming on the chemistry and biology of upland Welsh streams: testing model predictions. Freshwater Biology, 1995, 34, 165-175.	1.2	33
116	Effects of spring acid episodes on macroinvertebrates revealed by population data and in situ toxicity tests. Freshwater Biology, 2005, 50, 1568-1577.	1.2	33
117	Patterns of contamination by organochlorines and mercury in the eggs of two river passerines in Britain and Ireland with reference to individual PCB congeners. Environmental Pollution, 1992, 76, 233-243.	3.7	32
118	Macroinvertebrate distribution in Ecuadorian hill streams: the effects of altitude and land use. Fundamental and Applied Limnology, 2000, 149, 421-440.	0.4	32
119	Linking interdecadal changes in British river ecosystems to water quality and climate dynamics. Global Change Biology, 2014, 20, 2725-2740.	4.2	31
120	The influence of chemistry and habitat features on the microcrustacea of some upland Welsh streams. Freshwater Biology, 1991, 26, 439-451.	1.2	30
121	Developmental impairment in eurasian dipper nestlings exposed to urban stream pollutants. Environmental Toxicology and Chemistry, 2014, 33, 1315-1323.	2.2	30
122	The diet of DippersCinclus cincluswintering in the catchment of the River Wye, Wales. Bird Study, 1986, 33, 36-45.	0.4	29
123	Macroinvertebrate drift in streams of the Nepalese Himalaya. Freshwater Biology, 1994, 32, 573-583.	1.2	29
124	Use of a new standardized habitat survey for assessing the habitat preferences and distribution of upland river birds. Bird Study, 1997, 44, 327-337.	0.4	29
125	Chemical and biological effects of acid, aluminium and lime additions to a Welsh hill-stream. Environmental Pollution, 1989, 56, 283-297.	3.7	28
126	Liming acid streams: Aluminium toxicity to fish in mixing zones. Water, Air, and Soil Pollution, 1991, 55, 345.	1.1	28

#	Article	IF	CITATIONS
127	Spatial patterns concentrations in upland Wales in relation to catchment forest cover and forest age. Environmental Pollution, 1994, 84, 27-33.	3.7	28
128	NEW OR POORLY KNOWN DIATOMS FROM HIMALAYAN STREAMS. Diatom Research, 2000, 15, 237-262.	0.5	28
129	Effects of point-source PCB contamination on breeding performance and post-fledging survival in the dipper Cinclus cinclus. Environmental Pollution, 2000, 110, 505-513.	3.7	28
130	The post-natal and breeding dispersal of Welsh Dippers <i>Cinclus cinclus</i> . Bird Study, 1990, 37, 18-22.	0.4	27
131	The influence of stream acidification and riparian land use on the feeding ecology of Grey Wagtails <i>Motacilla cinerea</i> in Wales. Ibis, 1991, 133, 53-61.	1.0	27
132	The micro-distribution of aquatic macroinvertebrates in the Wye river system: the result of abiotic or biotic factors?. Freshwater Biology, 1988, 20, 241-247.	1.2	26
133	A review of the likely causal pathways relating the reduced density of breeding dippers Cinclus cinclus cinclus to the acidification of upland streams. Environmental Pollution, 1992, 78, 49-55.	3.7	26
134	The survival of early life stages of brown trout (Salmo trutta L.) in relation to aluminium speciation in upland Welsh streams. Aquatic Toxicology, 1990, 17, 213-230.	1.9	25
135	Acid deposition in Wales: the results of the 1995 Welsh Acid Waters Survey. Environmental Pollution, 1999, 105, 251-266.	3.7	25
136	Factors influencing the abundance of breeding Dippers <i>Cinclus cinclus</i> in the catchment of the River Wye, midâ€Wales. Ibis, 1985, 127, 332-340.	1.0	25
137	Dissolved Organic Nitrogen Regulation in Freshwaters. Journal of Environmental Quality, 2004, 33, 201.	1.0	25
138	Environmental pollutants in the eggs of Welsh Dipper;Cinclus cinclus:a potential monitor of organochlorine and mercury contamination in upland rivers. Bird Study, 1990, 37, 171-176.	0.4	24
139	Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses. PLoS ONE, 2014, 9, e86246.	1.1	24
140	The influences of habitat and seasonal sampling regimes on the ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye, Wales. Hydrobiologia, 1987, 150, 143-151.	1.0	23
141	APPLIED ISSUES Increasing litter retention in moorland streams: ecological and management aspects of a field experiment. Freshwater Biology, 1995, 33, 325-337.	1.2	23
142	The distribution of dippers, Cinclus cinclus (L.), in the acidâ€sensitive region of Wales 1984–95. Freshwater Biology, 1998, 39, 387-396.	1.2	22
143	Priority Wetland Invertebrates as Conservation Surrogates. Conservation Biology, 2010, 24, 573-582.	2.4	22
144	EDITORIAL: Ecological science for ecosystem services and the stewardship of <scp>N</scp> atural <scp>C</scp> apital. Journal of Applied Ecology, 2013, 50, 807-810.	1.9	22

#	Article	IF	CITATIONS
145	Long-term change in the suitability of welsh streams for dippers Cinclus cinclus as a result of acidification and recovery: A modelling study. Environmental Pollution, 1989, 62, 171-182.	3.7	21
146	The influence of conifer plantations on the distribution of the golden ringed dragonfly Cordulegaster boltoni (Odonata) in Upland Wales. Biological Conservation, 1990, 53, 241-251.	1.9	21
147	Applying landscape ecology to conservation biology: Spatially explicit analysis reveals dispersal limits on threatened wetland gastropods. Biological Conservation, 2007, 139, 286-296.	1.9	21
148	Evaluating the effects of riparian restoration on a temperate riverâ€system using standardized habitat survey. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, S96.	0.9	21
149	Biological Traits and the Transfer of Persistent Organic Pollutants through River Food Webs. Environmental Science & Technology, 2019, 53, 13246-13256.	4.6	21
150	The adaptive significance of brood size and time of breeding in the dipper <i>Cinclus cinclus</i> (Aves:) Tj ETQq0	0.0 rgBT /	Overlock 10
151	Effects of experimental acidification and liming on terrestrial invertebrates: implications for calcium availability to vertebrates. Environmental Pollution, 1998, 103, 183-191.	3.7	20
152	Using diatoms as quality indicators for a newly-formed urban lake and its catchment. Environmental Monitoring and Assessment, 2010, 162, 47-65.	1.3	20
153	Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model. Ecological Indicators, 2014, 37, 341-350.	2.6	20
154	The effects of riparian forestry on invertebrate drift and brown trout in upland streams of contrasting acidity. Hydrology and Earth System Sciences, 2004, 8, 578-588.	1.9	19
155	Ecology and biogeography of Himalayan diatoms: distribution along gradients of altitude, stream habitat and water chemistry. Fundamental and Applied Limnology, 2010, 177, 293-311.	0.4	19
156	The response of macroinvertebrates to experimental episodes of low pH with different forms of aluminium, during a natural spate. Hydrobiologia, 1988, 169, 225-232.	1.0	18

156	aluminium, during a natural spate. Hydrobiologia, 1988, 169, 225-232.	1.0	18
157	Comparative assessment of stream acidity using diatoms and macroinvertebrates: implications for river management and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 502-519.	0.9	18
158	Evaluating largeâ€scale effects of <i>Bacillus thuringiensis</i> var. <i>israelensis</i> on nonâ€biting midges (Chironomidae) in a eutrophic urban lake. Freshwater Biology, 2008, 53, 2117-2128.	1.2	18
159	Episodic acidification affects the breakdown and invertebrate colonisation of oak litter. Freshwater Biology, 2012, 57, 2318-2329.	1.2	18
160	The growth of brown trout (Salmo trutta) in mild winters and summer droughts in upland Wales Freshwater Biology, 1991, 26, 121-131.	1.2	17
161	Management of conifer plantations for the conservation of stream macroinvertebrates. Biological Conservation, 1993, 63, 171-176.	1.9	17
162	Habitat preferences of breeding Water Rail <i>Rallus aquaticus</i> . Bird Study, 2002, 49, 2-10.	0.4	17

#	Article	IF	CITATIONS
163	Modelling the effects of climate and land-use change on the hydrochemistry and ecology of the River Wye (Wales). Science of the Total Environment, 2018, 627, 733-743.	3.9	17
164	Aspects of the breeding ecology of Welsh Grey Wagtails <i>Motacilla cinerea</i> . Bird Study, 1987, 34, 43-51.	0.4	16
165	Inter- and intra-annual variation in the occurrence of organochlorine pesticides, polychlorinated biphenyl congeners, and mercury in the eggs of a river passerine. Archives of Environmental Contamination and Toxicology, 1994, 26, 7-12.	2.1	16
166	Niche segregation of Himalayan river birds. Journal of Field Ornithology, 2008, 79, 176-185.	0.3	16
167	The role of acidity in the ecology of Welsh lakes and streams. Monographiae Biologicae, 1990, , 93-119.	0.1	16
168	The effects of riparian management and physicochemistry on macroinvertebrate feeding guilds and community structure in upland British streams. Aquatic Conservation: Marine and Freshwater Ecosystems, 1992, 2, 309-324.	0.9	15
169	Local movements and population density of Water RailsRallus aquaticusin a small inland reedbed. Bird Study, 1995, 42, 82-87.	0.4	15
170	Sustainability of UK forestry: contemporary issues for the protection of freshwaters, a conclusion. Hydrology and Earth System Sciences, 2004, 8, 589-595.	1.9	15
171	The microdistribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2004, 14, 221-236.	0.9	15
172	Appraising riparian management effects on benthic macroinvertebrates in the Wye River system. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, S73.	0.9	15
173	Resolving largeâ€scale pressures on species and ecosystems: propensity modelling identifies agricultural effects on streams. Journal of Applied Ecology, 2016, 53, 408-417.	1.9	15
174	River organisms as indicators of the distribution and sources of persistent organic pollutants in contrasting catchments. Environmental Pollution, 2019, 255, 113144.	3.7	15
175	Environment and food web structure interact to alter the trophic magnification of persistent chemicals across river ecosystems. Science of the Total Environment, 2020, 717, 137271.	3.9	15
176	Aspects of the breeding biology of DippersCinclus cinclusin the southern catchment of the River Wye, Wales. Bird Study, 1985, 32, 164-169.	0.4	14
177	Pre-migratory and migratory movements of Swallows <i>Hirundo rustica</i> in Britain and Ireland. Bird Study, 1991, 38, 170-178.	0.4	13
178	The effect of sampling frequency on chemical parameters in acid-sensitive streams. Environmental Pollution, 1996, 93, 147-157.	3.7	13
179	Field testing the AWIC index for detecting acidification in British streams. Archiv Für Hydrobiologie, 2006, 166, 99-115.	1.1	13
180	American Dippers Indicate Contaminant Biotransport by Pacific Salmon. Environmental Science & Technology, 2012, 46, 1153-1162.	4.6	13

#	Article	IF	CITATIONS
181	Developing a diatom monitoring network in an urban river-basin: initial assessment and site selection. Hydrobiologia, 2012, 695, 137-151.	1.0	13
182	Eurasian Dipper Eggs Indicate Elevated Organohalogenated Contaminants in Urban Rivers. Environmental Science & Technology, 2013, 47, 130717151648003.	4.6	13
183	Effects of liming on the Coleoptera, Hemiptera, Araneae and Opiliones of catchment wetlands in Wales. Biological Conservation, 1997, 79, 43-57.	1.9	12
184	The distribution and conservation of threatened Sphaeriidae on British grazing marshland. Biodiversity and Conservation, 2005, 14, 2207-2220.	1.2	12
185	Local to Continental Influences on Nutrient and Contaminant Sources to River Birds. Environmental Science & Technology, 2010, 44, 1860-1867.	4.6	12
186	River birds as potential indicators of local- and catchment-scale influences on Himalayan river ecosystems. Ecosystems and People, 2019, 15, 90-101.	1.3	12
187	Further studies of the organochlorine content of Dipper <i>Cinclus cinclus</i> eggs: local differences between Welsh catchments. Bird Study, 1993, 40, 97-106.	0.4	11
188	Three challenges for the science of river conservation. , 1999, 9, 551-558.		11
189	Migration strategies of sylviid warblers: chance patterns or community dynamics?. Journal of Avian Biology, 2000, 31, 20-30.	0.6	11
190	Enhancing capacity for freshwater conservation at the genetic level: a demonstration using three stream macroinvertebrates. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27, 452-461.	0.9	11
191	The biological response of acidic streams to catchment liming compared to the changes predicted from stream chemistry. Journal of Environmental Management, 1992, 34, 105-115.	3.8	10
192	River habitat surveys and biodiversity in acid-sensitive rivers. Aquatic Conservation: Marine and Freshwater Ecosystems, 1998, 8, 501-514.	0.9	10
193	The effects of low pH and palliative liming on beech litter decomposition in acid-sensitive streams. Hydrobiologia, 2006, 571, 373-381.	1.0	9
194	A global analysis of zooplankton in natural and artificial fresh waters. Journal of Limnology, 2013, 72, 12.	0.3	9
195	The effects of pastoral intensification on the feeding interactions of generalist predators in streams. Molecular Ecology, 2018, 27, 590-602.	2.0	9
196	Chemical and ecological evidence on the acidification of Welsh lakes and rivers. Monographiae Biologicae, 1990, , 11-25.	0.1	9
197	Adapting streams for climate change using riparian broadleaf trees and its consequences for stream salmonids. Freshwater Biology, 2015, 60, 64-77.	1.2	8
198	Populations of highâ€value predators reflect the traits of their prey. Ecography, 2021, 44, 690-702.	2.1	8

12

#	Article	IF	CITATIONS
199	Rapid colonisation of a newly formed lake by zebra mussels and factors affecting juvenile settlement. Management of Biological Invasions, 2016, 7, 405-418.	0.5	8
200	The diet of Green Sandpipers <i>Tringa ochropus in</i> contrasting areas of their winter range. Bird Study, 1988, 35, 25-30.	0.4	7
201	Modelling ecological impacts of the acidification of Welsh streams: temporal changes in the occurrence of macroflora and macroinvertebrates. Hydrobiologia, 1989, 185, 163-174.	1.0	7
202	The effect of catchment liming on bryophytes in upland Welsh streams, with an assessment of the communities at risk. Aquatic Conservation: Marine and Freshwater Ecosystems, 1994, 4, 297-306.	0.9	7
203	The influence of a river bird, the dipper (Cinclus cinclus), on the behaviour and drift of its invertebrate prey. Freshwater Biology, 1996, 35, 45-56.	1.2	7
204	Sex ratio and maturity indicate the local dispersal and mortality of adult stoneflies. Freshwater Biology, 2006, 51, 1543-1551.	1.2	7
205	The influence of stream acidification and riparian landâ€use on the breeding biology of Grey Wagtails <i>Motacilla cinerea</i> in Wales. Ibis, 1991, 133, 286-292.	1.0	7
206	Biological barriers to restoration: testing the biotic resistance hypothesis in an upland stream recovering from acidification. Hydrobiologia, 2016, 777, 161-170.	1.0	7
207	Stewardship and management of freshwater ecosystems: From Leopold's land ethic to a freshwater ethic. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1499-1511.	0.9	7
208	The scientific strategy of the BTO ringing scheme. Ringing and Migration, 1999, 19, 129-143.	0.2	6
209	The diet of moulting DippersCinclus cinclusin the catchment of the Welsh River Wye. Bird Study, 1986, 33, 138-139.	0.4	5
210	Field experiments to assess biological effects of pollution episodes in streams. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1991, 24, 1734-1737.	0.1	5
211	editorialThe age of applied ecology. Journal of Applied Ecology, 2000, 37, 1-2.	1.9	5
212	Squeezed out: the consequences of riparian zone modification for specialist invertebrates. Biodiversity and Conservation, 2016, 25, 3075-3092.	1.2	5
213	Conservation Challenges to Freshwater Ecosystems. , 2020, , 270-278.		5
214	Ecotoxicological studies of acidity in Welsh streams. Monographiae Biologicae, 1990, , 159-172.	0.1	5
215	Studentâ€centred experiments with stream invertebrates. Journal of Biological Education, 2011, 45, 106-111.	0.8	4
216	Connecting the shifting currents of aquatic science and policy. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 995-1004.	0.9	4

#	Article	lF	CITATIONS
217	Testing the ecosystem service cascade framework for Atlantic salmon. Ecosystem Services, 2020, 46, 101196.	2.3	4
218	A 20-Year View of Monitoring Ecological Quality in English and Welsh Rivers. , 0, , 79-89.		4
219	Population characteristics of DipperCinclus cinclusroosts in mid and south Wales. Bird Study, 1990, 37, 165-170.	0.4	3
220	River birds in regulated rivers: cost or benefit?. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 167-170.	0.1	3
221	Field surveys can support ecological risk assessment. Integrated Environmental Assessment and Management, 2013, 9, 171-172.	1.6	2
222	Acid–base status mediates the selection of organic habitats by upland stream invertebrates. Hydrobiologia, 2015, 745, 97-109.	1.0	2
223	Testing the Himalayan degradation hypothesis: does catchment land use affect river biota?. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 895-900.	0.1	1
224	Editors' note: 40Âyears of applied ecology. Journal of Applied Ecology, 2003, 40, 1-1.	1.9	1
225	Spatial structure in the zooplankton of a newly formed and heavily disturbed urban lake. Fundamental and Applied Limnology, 2013, 183, 1-14.	0.4	1
226	Species assemblages of Chironomidae (Diptera) in acidic Welsh streams. Fundamental and Applied Limnology, 2001, 150, 597-627.	0.4	1
227	Modelling the ecological impact of changing acidity in Welsh streams. Monographiae Biologicae, 1990, , 279-298.	0.1	1
228	Community assembly, functional traits, and phylogeny in Himalayan river birds. Ecology and Evolution, 2022, 12, .	0.8	1
229	Effect of habitat structure on the distribution of Himalayan river birds. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 175-177.	0.1	0
230	The Utility of Biological Indicators of Stream Acidity in Wales. , 1992, , 1341-1354.		0