Xiaoli Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6306909/publications.pdf Version: 2024-02-01

Χιλου Shu

#	Article	IF	CITATIONS
1	The physiochemical and nutritional properties of high endosperm lipids rice mutants under artificially accelerated ageing. LWT - Food Science and Technology, 2022, 154, 112730.	2.5	8
2	Germinated highâ€resistant starch rice: A potential novel functional food. International Journal of Food Science and Technology, 2022, 57, 5439-5449.	1.3	5
3	Combination of High Zn Density and Low Phytic Acid for Improving Zn Bioavailability in Rice (Oryza) Tj ETQq1 1	0.784314 1.7	rgBT /Overloc
4	Physicochemical characterizations of starches isolated from Tetrastigma hemsleyanum Diels et Gilg. International Journal of Biological Macromolecules, 2021, 183, 1540-1547.	3.6	8
5	Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas (L.) Lam.). Scientific Reports, 2021, 11, 17116.	1.6	9
6	A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. Journal of Fungi (Basel, Switzerland), 2021, 7, 719.	1.5	85
7	Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydrate Polymers, 2020, 229, 115432.	5.1	34
8	MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 7095.	1.8	3
9	Identifying genes for resistant starch, slowly digestible starch, and rapidly digestible starch in rice using genome-wide association studies. Genes and Genomics, 2020, 42, 1227-1238.	0.5	11
10	The effects of internal endosperm lipids on starch properties: Evidence from rice mutant starches. Journal of Cereal Science, 2019, 89, 102804.	1.8	24
11	High-throughput method for preliminary screening of high dietary fiber rice. Food Chemistry, 2019, 300, 125192.	4.2	2
12	A novel starch: Characterizations of starches separated from tea (Camellia sinensis (L.) O. Ktze) seed. International Journal of Biological Macromolecules, 2019, 139, 1085-1091.	3.6	5
13	A Trypsin Family Protein Gene Controls Tillering and Leaf Shape in Barley. Plant Physiology, 2019, 181, 701-713.	2.3	17
14	Endogenous rice endosperm hemicellulose slows <i>inÂvitro</i> starch digestibility. International Journal of Food Science and Technology, 2019, 54, 734-743.	1.3	11
15	Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. International Journal of Biological Macromolecules, 2019, 128, 775-781.	3.6	48
16	Dependence of physiochemical, functional and textural properties of highâ€resistant starch rice on endogenous nonstarch polysaccharides. International Journal of Food Science and Technology, 2018, 53, 1079-1086.	1.3	18
17	<scp>MOS</scp> 1 functions closely with <scp>TCP</scp> transcription factors to modulate immunity and cell cycle in Arabidopsis. Plant Journal, 2018, 93, 66-78.	2.8	42
18	Genetic differentiation and diversity upon genotype and phenotype in cowpea (Vigna unguiculata L.) Tj ETQq0 () 0 rgBT /O	verlock 10 Tf

2

18

Xiaoli Shu

#	Article	IF	CITATIONS
19	Metabolite Profiling of a Zinc-Accumulating Rice Mutant. Journal of Agricultural and Food Chemistry, 2017, 65, 3775-3782.	2.4	5
20	Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12844-12849.	3.3	154
21	Characterisation of starch during germination and seedling development of a rice mutant with a high content of resistant starch. Journal of Cereal Science, 2015, 62, 94-101.	1.8	31
22	Characterization and comparative profiling of the small RNA transcriptomes in two phases of flowering in Cymbidium ensifolium. BMC Genomics, 2015, 16, 622.	1.2	22
23	Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Frontiers in Plant Science, 2014, 5, 197.	1.7	45
24	Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley. Molecular Breeding, 2014, 34, 2081-2089.	1.0	14
25	Development of Cymbidium ensifoliumgenic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums. BMC Genetics, 2014, 15, 124.	2.7	25
26	Effects of grain development on formation of resistant starch in rice. Food Chemistry, 2014, 164, 89-97.	4.2	28
27	Sequence variation and haplotypes of lipoxygenase gene LOX-1 in the Australian barley varieties. BMC Genetics, 2014, 15, 36.	2.7	4
28	Effects of gamma irradiation on starch digestibility of rice with different resistant starch content. International Journal of Food Science and Technology, 2013, 48, 35-43.	1.3	16
29	Slow Digestion Properties of Rice Different in Resistant Starch. Journal of Agricultural and Food Chemistry, 2009, 57, 7552-7559.	2.4	58

The Influences of Chain Length of Amylopectin on Resistant Starch in Rice (<i>Oryza sativa</i>) Tj ETQq0 Q Q rgBT /Overlock 10 45

31	Starch Structure and Digestibility of Rice High in Resistant Starch. Starch/Staerke, 2006, 58, 411-417.	1.1	30
32	Improving Hydrophilicity of Wheat Starch via Sodium Dodecyl Sulfate Treatment. Starch/Staerke, 0, , 2200002.	1.1	0