
## Eranda Nikolla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6306489/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | "One-Pot―Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS<br>Catalysis, 2011, 1, 408-410.                                                                                          | 11.2 | 607       |
| 2  | Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9727-9732.                                    | 7.1  | 354       |
| 3  | Advances in methane conversion processes. Catalysis Today, 2017, 285, 147-158.                                                                                                                                          | 4.4  | 207       |
| 4  | Promotion of the long-term stability of reforming Ni catalysts by surface alloying. Journal of Catalysis, 2007, 250, 85-93.                                                                                             | 6.2  | 205       |
| 5  | Controlling Carbon Surface Chemistry by Alloying:Â Carbon Tolerant Reforming Catalyst. Journal of<br>the American Chemical Society, 2006, 128, 11354-11355.                                                             | 13.7 | 172       |
| 6  | Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry. Journal of Catalysis, 2009, 263, 220-227.                 | 6.2  | 151       |
| 7  | Measuring and Relating the Electronic Structures of Nonmodel Supported Catalytic Materials to Their Performance. Journal of the American Chemical Society, 2009, 131, 2747-2754.                                        | 13.7 | 102       |
| 8  | Hydropyrolysis of Lignin Using Pd/HZSM-5. Energy & Fuels, 2015, 29, 1793-1800.                                                                                                                                          | 5.1  | 100       |
| 9  | Electronic Structure Engineering in Heterogeneous Catalysis: Identifying Novel Alloy Catalysts Based<br>on Rapid Screening for Materials with Desired Electronic Properties. Topics in Catalysis, 2012, 55,<br>376-390. | 2.8  | 80        |
| 10 | Control of interfacial acid–metal catalysis with organic monolayers. Nature Catalysis, 2018, 1, 148-155.                                                                                                                | 34.4 | 74        |
| 11 | Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions. Catalysis<br>Today, 2008, 136, 243-248.                                                                                         | 4.4  | 71        |
| 12 | Direct Electrochemical Oxidation of Hydrocarbon Fuels on SOFCs: Improved Carbon Tolerance of Ni<br>Alloy Anodes. Journal of the Electrochemical Society, 2009, 156, B1312.                                              | 2.9  | 66        |
| 13 | Molybdenum-Based Polyoxometalates as Highly Active and Selective Catalysts for the Epimerization of Aldoses. ACS Catalysis, 2014, 4, 1358-1364.                                                                         | 11.2 | 66        |
| 14 | Multicomponent Catalysts: Limitations and Prospects. ACS Catalysis, 2018, 8, 3202-3208.                                                                                                                                 | 11.2 | 64        |
| 15 | Establishing Relationships Between the Geometric Structure and Chemical Reactivity of Alloy<br>Catalysts Based on Their Measured Electronic Structure. Topics in Catalysis, 2010, 53, 348-356.                          | 2.8  | 60        |
| 16 | Directing Reaction Pathways through Controlled Reactant Binding at Pd–TiO <sub>2</sub> Interfaces.<br>Angewandte Chemie - International Edition, 2017, 56, 6594-6598.                                                   | 13.8 | 60        |
| 17 | Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. Journal of Catalysis, 2020, 388, 130-140.                                                             | 6.2  | 59        |
| 18 | Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed<br>Metal Oxides. Chemistry of Materials, 2018, 30, 2860-2872.                                                               | 6.7  | 56        |

Eranda Nikolla

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Electrochemical Conversion of Biomass-Based Oxygenated Compounds. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 85-104.                                                                        | 6.8  | 55        |
| 20 | Identifying optimal active sites for heterogeneous catalysis by metal alloys based on molecular<br>descriptors and electronic structure engineering. Current Opinion in Chemical Engineering, 2013, 2,<br>312-319. | 7.8  | 54        |
| 21 | Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides. Journal of the American<br>Chemical Society, 2018, 140, 8128-8137.                                                                         | 13.7 | 49        |
| 22 | Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): Oxygen reduction on nanostructured lanthanum nickelate oxides. Applied Catalysis B: Environmental, 2017, 200, 106-113.   | 20.2 | 41        |
| 23 | Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nature Communications, 2021, 12, 4895.                                                                        | 12.8 | 40        |
| 24 | Tunable Catalytic Performance of Palladium Nanoparticles for H <sub>2</sub> O <sub>2</sub> Direct<br>Synthesis via Surface-Bound Ligands. ACS Catalysis, 2020, 10, 5202-5207.                                      | 11.2 | 39        |
| 25 | Electro- and thermal-catalysis by layered, first series Ruddlesden-Popper oxides. Catalysis Today, 2016, 277, 214-226.                                                                                             | 4.4  | 34        |
| 26 | Design of Ruddlesden–Popper Oxides with Optimal Surface Oxygen Exchange Properties for Oxygen Reduction and Evolution. ACS Catalysis, 2017, 7, 5912-5920.                                                          | 11.2 | 32        |
| 27 | Engineering Complex, Layered Metal Oxides: High-Performance Nickelate Oxide Nanostructures for Oxygen Exchange and Reduction. ACS Catalysis, 2015, 5, 4013-4019.                                                   | 11.2 | 30        |
| 28 | Design Strategies for Efficient Nonstoichiometric Mixed Metal Oxide Electrocatalysts: Correlating<br>Measurable Oxide Properties to Electrocatalytic Performance. ACS Catalysis, 2019, 9, 10575-10586.             | 11.2 | 28        |
| 29 | Fundamental Insights into High-Temperature Water Electrolysis Using Ni-Based Electrocatalysts.<br>Journal of Physical Chemistry C, 2015, 119, 26980-26988.                                                         | 3.1  | 26        |
| 30 | Synthesis of shape-controlled La <sub>2</sub> NiO <sub>4+Î′</sub> nanostructures and their anisotropic properties for oxygen diffusion. Chemical Communications, 2015, 51, 137-140.                                | 4.1  | 26        |
| 31 | Nonprecious Metal Catalysts for Tuning Discharge Product Distribution at Solid–Solid Interfaces of<br>Aprotic Li–O <sub>2</sub> Batteries. Chemistry of Materials, 2019, 31, 7300-7310.                            | 6.7  | 25        |
| 32 | Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. Jacs Au, 2021, 1, 2224-2241.                                                     | 7.9  | 23        |
| 33 | Directing Reaction Pathways through Controlled Reactant Binding at Pd–TiO 2 Interfaces.<br>Angewandte Chemie, 2017, 129, 6694-6698.                                                                                | 2.0  | 22        |
| 34 | Nanoengineering of solid oxide electrochemical cell technologies: An outlook. Nano Research, 2019,<br>12, 2081-2092.                                                                                               | 10.4 | 19        |
| 35 | Reaction paths for hydrodeoxygenation of furfuryl alcohol at TiO2/Pd interfaces. Journal of Catalysis, 2019, 377, 28-40.                                                                                           | 6.2  | 17        |
| 36 | Electrochemical oxygen reduction on layered mixed metal oxides: Effect of B-site substitution.<br>Journal of Electroanalytical Chemistry, 2019, 833, 490-497.                                                      | 3.8  | 17        |

Eranda Nikolla

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Electrochemical Reduction of CO <sub>2</sub> on Metal-Based Cathode Electrocatalysts of Solid<br>Oxide Electrolysis Cells. Industrial & Engineering Chemistry Research, 2020, 59, 15884-15893.                                 | 3.7  | 17        |
| 38 | First-Principles Study of High Temperature CO <sub>2</sub> Electrolysis on Transition Metal Electrocatalysts. Industrial & amp; Engineering Chemistry Research, 2017, 56, 6155-6163.                                           | 3.7  | 16        |
| 39 | Embracing the Complexity of Catalytic Structures: A Viewpoint on the Synthesis of Nonstoichiometric<br>Mixed Metal Oxides for Catalysis. ACS Catalysis, 2020, 10, 516-527.                                                     | 11.2 | 14        |
| 40 | Communications: Developing relationships between the local chemical reactivity of alloy catalysts<br>and physical characteristics of constituent metal elements. Journal of Chemical Physics, 2010, 132,<br>111101.            | 3.0  | 13        |
| 41 | Nanostructured Nickelate Oxides as Efficient and Stable Cathode Electrocatalysts for Li–O2<br>Batteries. Topics in Catalysis, 2015, 58, 513-521.                                                                               | 2.8  | 12        |
| 42 | Supported Bifunctional Molybdenum Oxide-Palladium Catalysts for Selective Hydrodeoxygenation of<br>Biomass-Derived Polyols and 1,4-Anhydroerythritol. ACS Sustainable Chemistry and Engineering, 2022,<br>10, 5719-5727.       | 6.7  | 12        |
| 43 | Modulating Catalytic Properties of Targeted Metal Cationic Centers in Nonstochiometric Mixed Metal Oxides for Electrochemical Oxygen Reduction. ACS Energy Letters, 2021, 6, 1065-1072.                                        | 17.4 | 10        |
| 44 | Well-Defined Nanostructures for Catalysis by Atomic Layer Deposition. Studies in Surface Science and Catalysis, 2017, 177, 643-676.                                                                                            | 1.5  | 9         |
| 45 | Aprotic Alkali Metal–O <sub>2</sub> Batteries: Role of Cathode Surface-Mediated Processes and<br>Heterogeneous Electrocatalysis. ACS Energy Letters, 2021, 6, 665-674.                                                         | 17.4 | 8         |
| 46 | Elucidating the Role of B-Site Cations toward CO <sub>2</sub> Reduction in Perovskite-Based Solid<br>Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2022, 169, 034532.                                      | 2.9  | 8         |
| 47 | Reactivity of Pd–MO <sub>2</sub> encapsulated catalytic systems for CO oxidation. Catalysis Science<br>and Technology, 2022, 12, 1476-1486.                                                                                    | 4.1  | 7         |
| 48 | Hydrogen bonding. Part 82. Thermodynamic and infrared study of dimethonium and pentamethonium halide dihydrates. Journal of Molecular Structure, 2003, 657, 117-123.                                                           | 3.6  | 4         |
| 49 | <i>110th Anniversary:</i> Fabrication of Inverted Pd@TiO <sub>2</sub> Nanostructures for Selective Catalysis. Industrial & amp; Engineering Chemistry Research, 2019, 58, 4032-4041.                                           | 3.7  | 4         |
| 50 | Selective Câ^'O Bond Cleavage of Bioâ€Based Organic Acids over Palladium Promoted MoO x /TiO 2.<br>ChemCatChem, 2021, 13, 1294-1298.                                                                                           | 3.7  | 4         |
| 51 | Hydrogen bonding. Part 83. The bis-troponehydrogen cation: preparation, IR, and MO study of a proton<br>bridged dimer of tropone with a covalent three-center OHO bond. Journal of Molecular Structure,<br>2004, 691, 211-216. | 3.6  | 2         |
| 52 | Heterogeneous electrocatalysts for CO2 reduction. Catalysis, 0, , 94-121.                                                                                                                                                      | 1.0  | 2         |
| 53 | From Molecular Insights to Novel Catalysts Formulation. , 2010, , 275-292.                                                                                                                                                     |      | 1         |
| 54 | Hydrogen bonding. Part 80. Molecular orbital evaluation of C–H hydrogen bonding in<br>tetramethylammonium tetrahydroborate. Journal of Molecular Structure, 2002, 616, 181-186.                                                | 3.6  | 0         |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | lonic organoboranes. Part 9. Ab initio molecular orbital study of energy, structure, and frontier<br>orbitals of the isomeric [7.7.10x,y]ousenes. Journal of Molecular Structure, 2003, 655, 251-257. | 3.6 | 0         |