List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6306422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell, 1995, 80, 439-444.	13.5	367
2	Menadione-induced Reactive Oxygen Species Generation via Redox Cycling Promotes Apoptosis of Murine Pancreatic Acinar Cells. Journal of Biological Chemistry, 2006, 281, 40485-40492.	1.6	307
3	Ca2+ Flow via Tunnels in Polarized Cells: Recharging of Apical Ca2+ Stores by Focal Ca2+ Entry through Basal Membrane Patch. Cell, 1997, 88, 49-55.	13.5	268
4	Polarized Calcium Signaling in Exocrine Gland Cells. Annual Review of Physiology, 2008, 70, 273-299.	5.6	266
5	Fatty Acid Ethyl Esters Cause Pancreatic Calcium Toxicity via Inositol Trisphosphate Receptors and Loss of ATP Synthesis. Gastroenterology, 2006, 130, 781-793.	0.6	234
6	Calcium uptake via endocytosis with rapid release from acidifying endosomes. Current Biology, 1998, 8, 1335-1338.	1.8	227
7	Calcium Elevation in Mitochondria Is the Main Ca2+ Requirement for Mitochondrial Permeability Transition Pore (mPTP) Opening. Journal of Biological Chemistry, 2009, 284, 20796-20803.	1.6	217
8	NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. Journal of Cell Biology, 2003, 163, 271-282.	2.3	209
9	Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends in Neurosciences, 2004, 27, 203-209.	4.2	188
10	Ethanol toxicity in pancreatic acinar cells: Mediation by nonoxidative fatty acid metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10738-10743.	3.3	183
11	Calcium leak from intracellular stores—the enigma of calcium signalling. Cell Calcium, 2002, 32, 355-361.	1.1	166
12	Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO Journal, 2002, 21, 909-919.	3.5	166
13	Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models. Gastroenterology, 2015, 149, 481-492.e7.	0.6	162
14	Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65, 1333-1346.	6.1	159
15	Reactive Oxygen Species Induced by Bile Acid Induce Apoptosis and Protect Against Necrosis in Pancreatic Acinar Cells. Gastroenterology, 2011, 140, 2116-2125.	0.6	157
16	The endoplasmic reticulum: one continuous or several separate Ca2+ stores?. Trends in Neurosciences, 2001, 24, 271-276.	4.2	151
17	Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bileâ€induced pancreatic pathology. Journal of Physiology, 2002, 540, 49-55.	1.3	149
18	NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. Journal of Cell Science, 2006, 119, 226-238.	1.2	149

#	Article	IF	CITATIONS
19	Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5674-5679.	3.3	145
20	Direct Activation of Cytosolic Ca2+ Signaling and Enzyme Secretion by Cholecystokinin in Human Pancreatic Acinar Cells. Gastroenterology, 2008, 135, 632-641.	0.6	139
21	Menadione-induced apoptosis: roles of cytosolic Ca2+elevations and the mitochondrial permeability transition pore. Journal of Cell Science, 2002, 115, 485-497.	1.2	139
22	Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry. Biochemical Journal, 2010, 425, 159-168.	1.7	138
23	Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca ²⁺ -dependent mitochondrial dysfunction and acute pancreatitis. Gut, 2014, 63, 1313-1324.	6.1	135
24	Differential Use of Myristoyl Groups on Neuronal Calcium Sensor Proteins as a Determinant of Spatio-temporal Aspects of Ca2+ Signal Transduction. Journal of Biological Chemistry, 2002, 277, 14227-14237.	1.6	129
25	Bile Acids Induce Ca2+ Release from Both the Endoplasmic Reticulum and Acidic Intracellular Calcium Stores through Activation of Inositol Trisphosphate Receptors and Ryanodine Receptors. Journal of Biological Chemistry, 2006, 281, 40154-40163.	1.6	124
26	Menadione-induced apoptosis: roles of cytosolic Ca(2+) elevations and the mitochondrial permeability transition pore. Journal of Cell Science, 2002, 115, 485-97.	1.2	123
27	Dynamic Changes in Cytosolic and Mitochondrial ATP Levels in Pancreatic Acinar Cells. Gastroenterology, 2010, 138, 1976-1987.e5.	0.6	120
28	Basal and Physiological Ca2+ Leak from the Endoplasmic Reticulum of Pancreatic Acinar Cells. Journal of Biological Chemistry, 2002, 277, 26479-26485.	1.6	115
29	Effects of Secretagogues and Bile Acids on Mitochondrial Membrane Potential of Pancreatic Acinar Cells. Journal of Biological Chemistry, 2004, 279, 27327-27338.	1.6	114
30	Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors. Current Biology, 2009, 19, 1648-1653.	1.8	114
31	Polarized Calcium and Calmodulin Signaling in Secretory Epithelia. Physiological Reviews, 2002, 82, 701-734.	13.1	111
32	Calcium-binding Protein 1 Is an Inhibitor of Agonist-evoked, Inositol 1,4,5-Trisphosphate-mediated Calcium Signaling. Journal of Biological Chemistry, 2004, 279, 547-555.	1.6	111
33	Modulation of calcium signalling by mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1374-1382.	0.5	110
34	Correlation of NADH and Ca2+signals in mouse pancreatic acinar cells. Journal of Physiology, 2002, 539, 41-52.	1.3	105
35	The calcium store in the nuclear envelope. Cell Calcium, 1998, 23, 87-90.	1.1	103
36	Signal transduction, calcium and acute pancreatitis. Pancreatology, 2003, 3, 497-505.	0.5	99

#	Article	IF	CITATIONS
37	ER calcium and the functions of intracellular organelles. Seminars in Cell and Developmental Biology, 2001, 12, 11-17.	2.3	98
38	Pancreatic protease activation by alcohol metabolite depends on Ca ²⁺ release via acid store IP ₃ receptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10758-10763.	3.3	97
39	Stable Golgi-Mitochondria Complexes and Formation of Golgi Ca2+ Gradients in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2005, 280, 15794-15799.	1.6	95
40	Traffic of Kv4 K+ channels mediated by KChIP1 is via a novel post-ER vesicular pathway. Journal of Cell Biology, 2005, 171, 459-469.	2.3	87
41	Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. Journal of Physiology, 1999, 518, 463-467.	1.3	81
42	Localization of Ca2+ Extrusion Sites in Pancreatic Acinar Cells. Journal of Biological Chemistry, 1996, 271, 7615-7619.	1.6	78
43	Polarity in intracellular calcium signaling. BioEssays, 1999, 21, 851-860.	1.2	78
44	Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. Journal of Biological Chemistry, 2018, 293, 8032-8047.	1.6	75
45	Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells. Journal of Cell Biology, 2003, 163, 715-721.	2.3	74
46	Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca ²⁺ release. Gut, 2017, 66, 301-313.	6.1	74
47	Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins. American Journal of Physiology - Renal Physiology, 2007, 293, G296-G307.	1.6	71
48	Localized Ca2+ uncaging reveals polarized distribution of Ca2+-sensitive Ca2+ release sites. Journal of Cell Biology, 2002, 158, 283-292.	2.3	69
49	Evidence for an interaction between Golli and STIM1 in store-operated calcium entry. Biochemical Journal, 2010, 430, 453-460.	1.7	60
50	Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. Journal of Cellular and Molecular Medicine, 2018, 22, 4617-4629.	1.6	58
51	Calcium gradients and the Golgi. Cell Calcium, 2006, 40, 505-512.	1.1	55
52	Short pulses of acetylcholine stimulation induce cytosolic Ca2+ signals that are excluded from the nuclear region in pancreatic acinar cells. Pflugers Archiv European Journal of Physiology, 1996, 432, 1055-1061.	1.3	52
53	Ins <i>P</i> 3 receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. Biochemical Journal, 2011, 436, 231-239.	1.7	50
54	Non-uniform distribution of mitochondria in pancreatic acinar cells. Cell and Tissue Research, 2003, 313, 37-45.	1.5	49

#	Article	IF	CITATIONS
55	Calcium-dependent release of NO from intracellular S-nitrosothiols. EMBO Journal, 2006, 25, 3024-3032.	3.5	48
56	Calmodulin protects against alcohol-induced pancreatic trypsinogen activation elicited via Ca ²⁺ release through IP ₃ receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5873-5878.	3.3	47
57	Long Distance Communication between Muscarinic Receptors and Ca2+ Release Channels Revealed by Carbachol Uncaging in Cell-attached Patch Pipette. Journal of Biological Chemistry, 2003, 278, 20860-20864.	1.6	46
58	cAMP Induces Stromal Interaction Molecule 1 (STIM1) Puncta but neither Orai1 Protein Clustering nor Store-operated Ca2+ Entry (SOCE) in Islet Cells. Journal of Biological Chemistry, 2012, 287, 9862-9872.	1.6	45
59	cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells: Effects of PKA and EPAC. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2664-2672.	1.9	44
60	ATP depletion induces translocation of STIM1 to puncta and formation of STIM1–ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP. Pflugers Archiv European Journal of Physiology, 2008, 457, 505-517.	1.3	40
61	Bile Acids Induce a Cationic Current, Depolarizing Pancreatic Acinar Cells and Increasing the Intracellular Na+ Concentration. Journal of Biological Chemistry, 2005, 280, 1764-1770.	1.6	39
62	Dual sensitivity of sarcoplasmic/endoplasmic Ca2+-ATPase to cytosolic and endoplasmic reticulum Ca2+ as a mechanism of modulating cytosolic Ca2+ oscillations. Biochemical Journal, 2004, 383, 353-360.	1.7	37
63	ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile. Pflugers Archiv European Journal of Physiology, 2008, 455, 1025-1039.	1.3	37
64	A Novel Role for Bcl-2 in Regulation of Cellular Calcium Extrusion. Current Biology, 2012, 22, 1241-1246.	1.8	37
65	Endoplasmic reticulum–plasma membrane junctions: structure, function and dynamics. Journal of Physiology, 2016, 594, 2837-2847.	1.3	37
66	Intracellular glucose switches between cyclic ADP-ribose and inositol trisphosphate triggering of cytosolic Ca2+ spiking. Current Biology, 1998, 8, 865-868.	1.8	34
67	What can we learn about cell signalling by combining optical imaging and patch clamp techniques?. Pflugers Archiv European Journal of Physiology, 2002, 444, 305-316.	1.3	33
68	Distribution of Ca2+ extrusion sites on the mouse pancreatic acinar cell surface. Cell Calcium, 1997, 22, 5-10.	1.1	32
69	The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells. Biochemical Journal, 2015, 465, 405-412.	1.7	30
70	Effects of the Mitochondria-Targeted Antioxidant Mitoquinone in Murine Acute Pancreatitis. Mediators of Inflammation, 2015, 2015, 1-13.	1.4	29
71	Isoproterenol Evokes Extracellular Ca2+ Spikes Due to Secretory Events in Salivary Gland Cells. Journal of Biological Chemistry, 1998, 273, 4106.	1.6	29
72	How to measure Ca2+ in cellular organelles?. Cell Calcium, 2005, 38, 201-211.	1.1	28

#	Article	IF	CITATIONS
73	Hippocalcin signaling via site-specific translocation in hippocampal neurons. Neuroscience Letters, 2008, 442, 152-157.	1.0	23
74	TRO40303 Ameliorates Alcohol-Induced Pancreatitis Through Reduction of Fatty Acid Ethyl Ester–Induced Mitochondrial Injury and Necrotic Cell Death. Pancreas, 2018, 47, 18-24.	0.5	23
75	Epithelial–mesenchymal transition, IP3 receptors and ER–PM junctions: translocation of Ca2+ signalling complexes and regulation of migration. Biochemical Journal, 2016, 473, 757-767.	1.7	21
76	Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine. Antioxidants and Redox Signaling, 2015, 22, 451-464.	2.5	19
77	Spatial characterisation of ryanodine-induced calcium release in mouse pancreatic acinar cells. Biochemical Journal, 2003, 369, 441-445.	1.7	17
78	Selective inhibition of BET proteins reduces pancreatic damage and systemic inflammation in bile acid- and fatty acid ethyl ester- but not caerulein-induced acute pancreatitis. Pancreatology, 2017, 17, 689-697.	0.5	17
79	Mitochondrial junctions with cellular organelles: Ca2+ signalling perspective. Pflugers Archiv European Journal of Physiology, 2018, 470, 1181-1192.	1.3	16
80	Minireview: Regulation of store-operated calcium entry: lessons from a polarized cell. European Journal of Cell Biology, 1999, 78, 221-223.	1.6	15
81	Intracellular rupture, exocytosis and actin interaction of endocytic vacuoles in pancreatic acinar cells: initiating events in acute pancreatitis. Journal of Physiology, 2018, 596, 2547-2564.	1.3	15
82	LAP-like non-canonical autophagy and evolution of endocytic vacuoles in pancreatic acinar cells. Autophagy, 2020, 16, 1314-1331.	4.3	15
83	Saltatory formation, sliding and dissolution of ER–PM junctions in migrating cancer cells. Biochemical Journal, 2013, 451, 25-32.	1.7	14
84	Mitochondrial Targeting of Antioxidants Alters Pancreatic Acinar Cell Bioenergetics and Determines Cell Fate. International Journal of Molecular Sciences, 2019, 20, 1700.	1.8	11
85	How to win ATP and influence Ca2+ signaling. Cell Calcium, 2014, 55, 131-138.	1.1	10
86	Knockout of the Mitochondrial Calcium Uniporter Strongly Suppresses Stimulus-Metabolism Coupling in Pancreatic Acinar Cells but Does Not Reduce Severity of Experimental Acute Pancreatitis. Cells, 2020, 9, 1407.	1.8	10
87	Protective Effects of Necrostatin-1 in Acute Pancreatitis: Partial Involvement of Receptor Interacting Protein Kinase 1. Cells, 2021, 10, 1035.	1.8	10
88	Visualizing formation and dynamics of vacuoles in living cells using contrasting dextran-bound indicator: endocytic and nonendocytic vacuoles. American Journal of Physiology - Renal Physiology, 2007, 293, G1333-G1338.	1.6	8
89	Mitochondrial calcium in the life and death of exocrine secretory cells. Cell Calcium, 2012, 52, 86-92.	1.1	7
90	F1F0-ATP Synthase Inhibitory Factor 1 in the Normal Pancreas and in Pancreatic Ductal Adenocarcinoma: Effects on Bioenergetics, Invasion and Proliferation. Frontiers in Physiology, 2018, 9, 833.	1.3	7

0

#	Article	IF	CITATIONS
91	Cellular geography of IP3 receptors, STIM and Orai: a lesson from secretory epithelial cells. Biochemical Society Transactions, 2012, 40, 108-111.	1.6	5
92	Altered Bioenergetics of Blood Cell Sub-Populations in Acute Pancreatitis Patients. Journal of Clinical Medicine, 2019, 8, 2201.	1.0	5
93	Pharmacologically Directed Cell Disposal: Labeling Damaged Cells for Phagocytosis as a Strategy against Acute Pancreatitis. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 80-85.	3.4	3
94	Intramitochondrial Ca 2+ Sensing by EMRE: The Matrix Outlook on Stimulus-Metabolism Coupling. Molecular Cell, 2016, 61, 646-647.	4.5	2
95	The role of Ca2+ signalling in the physiology and pathophysiology of exocrine pancreas. Current Opinion in Physiology, 2020, 17, 96-105.	0.9	1
96	Introduction. Advances in Experimental Medicine and Biology, 2017, 993, 213-216.	0.8	0
97	New Aspects of the Contribution of ER to SOCE Regulation: The Role of the ER and ER-Plasma Membrane Junctions in the Regulation of SOCE. Advances in Experimental Medicine and Biology, 2017, 993, 217-237.	0.8	0
98	Mitochondrial signalling, physiology and pathophysiology. Pflugers Archiv European Journal of Physiology, 2018, 470, 1139-1140.	1.3	0
99	Polarity of action in salivary gland acinar cells: Local and preferential Ca2+ signalling. Cell Calcium, 2021, 99, 102471.	1.1	0

100 Subcellular Compartmentalization of Calcium Signaling. , 2005, , 417-432.