
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6306244/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research, 2022, 1778, 147781.	2.2	7
2	A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively. Cells, 2022, 11, 1018.	4.1	4
3	Editorial: LRRK2—Fifteen Years From Cloning to the Clinic. Frontiers in Neuroscience, 2022, 16, 880914.	2.8	0
4	LRRK2 as a target for modulating immune system responses. Neurobiology of Disease, 2022, 169, 105724.	4.4	11
5	Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathologica, 2022, 144, 81-106.	7.7	22
6	Leucine-rich repeat kinase 2 (LRRK2): an update on the potential therapeutic target for Parkinson's disease. Expert Opinion on Therapeutic Targets, 2022, 26, 537-546.	3.4	5
7	The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Molecular Neurobiology, 2022, 59, 5000-5023.	4.0	3
8	Extracellular clusterin limits the uptake of αâ€synuclein fibrils by murine and human astrocytes. Glia, 2021, 69, 681-696.	4.9	32
9	Parkinson's Disease–Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance. Molecular Neurobiology, 2021, 58, 3119-3140.	4.0	54
10	LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation. Brain, 2021, 144, 1509-1525.	7.6	17
11	Too much for your own good: Excessive dopamine damages neurons and contributes to Parkinson's disease. Journal of Neurochemistry, 2021, 158, 833-836.	3.9	5
12	On the evaluation of ALD TiO2, ZrO2 and HfO2 coatings on corrosion and cytotoxicity performances. Journal of Magnesium and Alloys, 2021, 9, 1806-1819.	11.9	25
13	Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. Npj Parkinson's Disease, 2021, 7, 85.	5.3	20
14	LRRK2 signaling in neurodegeneration: two decades of progress. Essays in Biochemistry, 2021, 65, 859-872.	4.7	7
15	Leucineâ€rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. Journal of Neurochemistry, 2020, 152, 273-283.	3.9	21
16	Divergent Effects of G2019S and R1441C LRRK2 Mutations on LRRK2 and Rab10 Phosphorylations in Mouse Tissues. Cells, 2020, 9, 2344.	4.1	34
17	Co-occurring WARS2 and CHRNA6 mutations in a child with a severe form of infantile parkinsonism. Parkinsonism and Related Disorders, 2020, 72, 75-79.	2.2	16
18	Leucine-rich repeat kinase 2 (LRRK2) and Parkinson's disease: from genetics to pathobiology. , 2020, , 3-18.		1

#	Article	IF	CITATIONS
19	Levetiracetam treatment ameliorates LRRK2 pathological mutant phenotype. Journal of Cellular and Molecular Medicine, 2019, 23, 8505-8510.	3.6	7
20	Kinase activity of mutant LRRK2 manifests differently in hetero-dimeric vs. homo-dimeric complexes. Biochemical Journal, 2019, 476, 559-579.	3.7	19
21	Leucineâ€rich repeat kinase 2 phosphorylation on synapsin I regulates glutamate release at preâ€synaptic sites. Journal of Neurochemistry, 2019, 150, 264-281.	3.9	25
22	Transcriptome analysis of LRRK2 knock-out microglia cells reveals alterations of inflammatory- and oxidative stress-related pathways upon treatment with α-synuclein fibrils. Neurobiology of Disease, 2019, 129, 67-78.	4.4	53
23	Ceramides in Parkinson's Disease: From Recent Evidence to New Hypotheses. Frontiers in Neuroscience, 2019, 13, 330.	2.8	41
24	The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. Journal of Biological Chemistry, 2019, 294, 4738-4758.	3.4	62
25	PAKs in the brain: Function and dysfunction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 444-453.	3.8	38
26	The role of LRRK2 in cytoskeletal dynamics. Biochemical Society Transactions, 2018, 46, 1653-1663.	3.4	24
27	Leucine-rich repeat kinase 2 controls protein kinase A activation state through phosphodiesterase 4. Journal of Neuroinflammation, 2018, 15, 297.	7.2	33
28	The LRRK2 Variant E193K Prevents Mitochondrial Fission Upon MPP+ Treatment by Altering LRRK2 Binding to DRP1. Frontiers in Molecular Neuroscience, 2018, 11, 64.	2.9	32
29	Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation. Molecular Neurodegeneration, 2018, 13, 3.	10.8	77
30	DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Scientific Reports, 2017, 7, 40699.	3.3	107
31	Cross-talk between LRRK2 and PKA: implication for Parkinson's disease?. Biochemical Society Transactions, 2017, 45, 261-267.	3.4	31
32	GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 2017, 26, 2747-2767.	2.9	67
33	Leucine Rich Repeat Kinase 2: beyond Parkinson's and beyond kinase inhibitors. Expert Opinion on Therapeutic Targets, 2017, 21, 751-753.	3.4	6
34	Molecular Insights and Functional Implication of LRRK2 Dimerization. Advances in Neurobiology, 2017, 14, 107-121.	1.8	12
35	Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathologica Communications, 2017, 5, 22.	5.2	73
36	Recent findings on the physiological function of DJ-1: Beyond Parkinson's disease. Neurobiology of Disease, 2017, 108, 65-72.	4.4	74

#	Article	IF	CITATIONS
37	PAK6 Phosphorylates 14-3-3Î ³ to Regulate Steady State Phosphorylation of LRRK2. Frontiers in Molecular Neuroscience, 2017, 10, 417.	2.9	46
38	Role of LRRK2 in the regulation of dopamine receptor trafficking. PLoS ONE, 2017, 12, e0179082.	2.5	55
39	Secretion-Positive LGI1 Mutations Linked to Lateral Temporal Epilepsy Impair Binding to ADAM22 and ADAM23 Receptors. PLoS Genetics, 2016, 12, e1006376.	3.5	23
40	LRRK2 deficiency impacts ceramide metabolism in brain. Biochemical and Biophysical Research Communications, 2016, 478, 1141-1146.	2.1	50
41	Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation. Scientific Reports, 2016, 6, 33897.	3.3	61
42	LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Molecular Neurodegeneration, 2016, 11, 1.	10.8	128
43	LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand?. Current Neuropharmacology, 2016, 14, 214-225.	2.9	63
44	Leucineâ€rich repeat kinase 2 interacts with p21â€activated kinase 6 to control neurite complexity in mammalian brain. Journal of Neurochemistry, 2015, 135, 1242-1256.	3.9	57
45	Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-ήB p50 signaling in cultured microglia cells. Journal of Neuroinflammation, 2015, 12, 230.	7.2	99
46	Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation. PLoS ONE, 2015, 10, e0136769.	2.5	55
47	LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Frontiers in Molecular Neuroscience, 2014, 7, 49.	2.9	82
48	Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2626-2631.	7.1	342
49	GTP binding controls complex formation by the human ROCO protein MASL 1. FEBS Journal, 2014, 281, 261-274.	4.7	13
50	LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?. Journal of Neuroinflammation, 2014, 11, 52.	7.2	148
51	Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging. Neurobiology of Disease, 2014, 71, 62-73.	4.4	48
52	Genetic, Structural, and Molecular Insights into the Function of Ras of Complex Proteins Domains. Chemistry and Biology, 2014, 21, 809-818.	6.0	20
53	Biophysical groundwork as a hinge to unravel the biology of <i>α</i> -synuclein aggregation and toxicity. Quarterly Reviews of Biophysics, 2014, 47, 1-48.	5.7	32
54	The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Human Molecular Genetics, 2014, 23, 5615-5629.	2.9	56

#	Article	IF	CITATIONS
55	Differential protein–protein interactions of <scp>LRRK</scp> 1 and <scp>LRRK</scp> 2 indicate roles in distinct cellular signaling pathways. Journal of Neurochemistry, 2014, 131, 239-250.	3.9	49
56	GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 2013, 22, 1140-1156.	2.9	124
57	Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies. FASEB Journal, 2013, 27, 2101-2110.	0.5	42
58	α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity. PLoS ONE, 2013, 8, e82732.	2.5	47
59	Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease. Biochemical Society Transactions, 2012, 40, 1058-1062.	3.4	32
60	GTP binding and intramolecular regulation by the ROC domain of Death Associated Protein Kinase 1. Scientific Reports, 2012, 2, 695.	3.3	12
61	Presynaptic dysfunction in Parkinson's disease: a focus on LRRK2. Biochemical Society Transactions, 2012, 40, 1111-1116.	3.4	33
62	Parkinson's disease and immune system: is the culprit LRRKing in the periphery?. Journal of Neuroinflammation, 2012, 9, 94.	7.2	34
63	Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers. PLoS ONE, 2012, 7, e43472.	2.5	92
64	Exosomes-associated neurodegeneration and progression of Parkinson's disease. American Journal of Neurodegenerative Disease, 2012, 1, 217-25.	0.1	55
65	Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. Journal of Neurochemistry, 2011, 116, 304-315.	3.9	114
66	Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of Parkinson's disease?. Molecular Neurodegeneration, 2011, 6, 6.	10.8	36
67	Structural and Morphological Characterization of Aggregated Species of α-Synuclein Induced by Docosahexaenoic Acid. Journal of Biological Chemistry, 2011, 286, 22262-22274.	3.4	101
68	α-Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neuroscience, 2010, 11, 41.	1.9	44
69	MKK6 binds and regulates expression of Parkinson's diseaseâ€related protein LRRK2. Journal of Neurochemistry, 2010, 112, 1593-1604.	3.9	94
70	The Parkinson's Disease Associated LRRK2 Exhibits Weaker In Vitro Phosphorylation of 4E-BP Compared to Autophosphorylation. PLoS ONE, 2010, 5, e8730.	2.5	86
71	Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1. Journal of Biological Chemistry, 2009, 284, 6476-6485.	3.4	242
72	Leucine-Rich Repeat Kinase 2 Mutations and Parkinson's Disease: Three Questions. ASN Neuro, 2009, 1, AN20090007.	2.7	244

ELISA GREGGIO

#	Article	IF	CITATIONS
73	The R1441C mutation alters the folding properties of the ROC domain of LRRK2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 1194-1197.	3.8	42
74	The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochemical and Biophysical Research Communications, 2009, 389, 449-454.	2.1	138
75	Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1499-1504.	7.1	218
76	The Parkinson Disease-associated Leucine-rich Repeat Kinase 2 (LRRK2) Is a Dimer That Undergoes Intramolecular Autophosphorylation. Journal of Biological Chemistry, 2008, 283, 16906-16914.	3.4	268
77	The Chaperone Activity of Heat Shock Protein 90 Is Critical for Maintaining the Stability of Leucine-Rich Repeat Kinase 2. Journal of Neuroscience, 2008, 28, 3384-3391.	3.6	178
78	The Role of LRRK2 Kinase Activity in Cellular PD Models. , 2008, , 423-431.		1
79	Kinase signaling pathways as potential targets in the treatment of Parkinson's disease. Expert Review of Proteomics, 2007, 4, 783-792.	3.0	21
80	The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochemical and Biophysical Research Communications, 2007, 357, 668-671.	2.1	244
81	Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. Journal of Neurochemistry, 2007, 102, 93-102.	3.9	78
82	Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 2006, 23, 329-341.	4.4	683
83	Analysis of IFT74as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology, 2006, 6, 44.	1.8	70
84	Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease. Journal of Neurochemistry, 2005, 93, 246-256.	3.9	103