
Valérie Briois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6306213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cationic Order and Structure of [Znâ^'Crâ^'Cl] and [Cuâ^'Crâ^'Cl] Layered Double Hydroxides:Â A XRD and EXAFS Study. Journal of Physical Chemistry B, 2000, 104, 5915-5923.	2.6	117
2	ROCK: the new Quick-EXAFS beamline at SOLEIL. Journal of Physics: Conference Series, 2016, 712, 012149.	0.4	111
3	Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray Absorption Spectroscopy monitoring of the activation of copper alumina catalyst. Catalysis Today, 2014, 229, 114-122.	4.4	108
4	X-ray absorption spectroscopy and heterogeneous catalysis: Performances at the SOLEIL's SAMBA beamline. Catalysis Today, 2013, 205, 148-158.	4.4	78
5	The SAMBA quick-EXAFS monochromator: XAS with edge jumping. Journal of Synchrotron Radiation, 2012, 19, 417-424.	2.4	76
6	Speciation of Ruthenium as a Reduction Promoter of Silica-Supported Co Catalysts: A Time-Resolved in Situ XAS Investigation. ACS Catalysis, 2015, 5, 1273-1282.	11.2	76
7	Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Journal of Materials Chemistry A, 2019, 7, 20285-20292.	10.3	69
8	Co-K and Mo-K edges Quick-XAS study of the sulphidation properties of Mo/Al2O3 and CoMo/Al2O3 catalysts. Comptes Rendus Chimie, 2016, 19, 1337-1351.	0.5	57
9	High pressure cell for edge jumping X-ray absorption spectroscopy: Applications to industrial liquid sulfidation of hydrotreatment catalysts. Catalysis Today, 2019, 336, 63-73.	4.4	54
10	XAS/WAXS Time-Resolved Phase Speciation of Chlorine LDH Thermal Transformation: Emerging Roles of Isovalent Metal Substitution. Chemistry of Materials, 2013, 25, 2855-2867.	6.7	52
11	Effect of the balance between Co(II) and Co(0) oxidation states on the catalytic activity of cobalt catalysts for Ethanol Steam Reforming. Catalysis Today, 2014, 229, 88-94.	4.4	50
12	Correlation between Structural and Catalytic Properties of Copper Supported on Porous Alumina for the Ethanol Dehydrogenation Reaction. ChemCatChem, 2015, 7, 1668-1677.	3.7	46
13	Influence of the Preparation Conditions of Oxidic NiMo/Al ₂ O ₃ Catalysts on the Sulfidation Ability: A Quick-XAS and Raman Spectroscopic Study. Journal of Physical Chemistry C, 2015, 119, 23928-23942.	3.1	35
14	Polymer–clay nanocomposites thermal stability: experimental evidence of the radical trapping effect. RSC Advances, 2013, 3, 22830.	3.6	32
15	Operando monitoring of metal sites and coke evolution during non-oxidative and oxidative ethanol steam reforming over Ni and NiCu ex-hydrotalcite catalysts. Catalysis Today, 2019, 336, 122-130.	4.4	27
16	Quick-XAS and Raman operando characterisation of a cobalt alumina-supported catalyst under realistic Fischer–Tropsch reaction conditions. Catalysis Today, 2013, 205, 94-100.	4.4	25
17	ROCK: A Beamline Tailored for Catalysis and Energy-Related Materials from ms Time Resolution to µm Spatial Resolution. Synchrotron Radiation News, 2020, 33, 20-25.	0.8	24
18	Correlation of Sol–Gel Aluminaâ€Supported Cobalt Catalyst Processing to Cobalt Speciation, Ethanol Steam Reforming Activity, and Stability. ChemCatChem, 2017, 9, 3918-3929.	3.7	21

Valérie Briois

#	Article	IF	CITATIONS
19	Sol-gel synthesis of nanocrystalline MgO and its application as support in Ni/MgO catalysts for ethanol steam reforming. Applied Surface Science, 2021, 542, 148744.	6.1	21
20	Molecular approach to prepare mixed MoW alumina supported hydrotreatment catalysts using H ₄ SiMo _n W _{12â^'n} O ₄₀ heteropolyacids. Catalysis Science and Technology, 2018, 8, 5557-5572.	4.1	20
21	Insights into the Preparation of Copper Catalysts Supported on Layered Double Hydroxide Derived Mixed Oxides for Ethanol Dehydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 26001-26012.	8.0	19
22	<i>Operando</i> XAS/Raman/MS monitoring of ethanol steam reforming reaction–regeneration cycles. Catalysis Science and Technology, 2018, 8, 6297-6301.	4.1	17
23	Multivariate Analysis of Coupled Operando EPR/XANES/EXAFS/UV–Vis/ATRâ€IR Spectroscopy: A New Dimension for Mechanistic Studies of Catalytic Gasâ€Liquid Phase Reactions. Chemistry - A European Journal, 2020, 26, 7395-7404.	3.3	15
24	Genesis of active phase in MoW/Al2O3 hydrotreating catalysts monitored by HAADF and in situ QEXAFS combined to MCR-ALS analysis. Applied Catalysis B: Environmental, 2020, 269, 118766.	20.2	13
25	First in situ temperature quantification of CoMoS species upon gas sulfidation enabled by new insight on cobalt sulfide formation. Catalysis Today, 2021, 377, 114-126.	4.4	13
26	Sulphidation study of a dried Ni/Al ₂ O ₃ catalyst by time-resolved XAS-MS combined with <i>in situ</i> Raman spectroscopy and multivariate Quick-XAS data analysis. Journal of Lithic Studies, 2017, 3, 33-42.	0.5	10
27	X-ray absorption spectroscopy of manganese, cobalt, copper and zinc inorganic salts of tetrathiafulvalene and bis(ethylenedithio)tetrathiafulvalene. Chemistry of Materials, 1992, 4, 484-493.	6.7	9
28	Thermal stability of PMMA–LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments. RSC Advances, 2018, 8, 34670-34681.	3.6	9
29	Bismuth mobile promoter and cobalt-bismuth nanoparticles in carbon nanotube supported Fischer-Tropsch catalysts with enhanced stability. Journal of Catalysis, 2021, 401, 102-114.	6.2	9
30	Quick-EXAFS and Raman monitoring of activation, reaction and deactivation of NiCu catalysts obtained from hydrotalcite-like precursors. Physical Chemistry Chemical Physics, 2020, 22, 18835-18848.	2.8	8
31	Study of hydrotreating performance of trimetallic NiMoW/Al2O3 catalysts prepared from mixed MoW Keggin heteropolyanions with various Mo/W ratios. Journal of Catalysis, 2021, 403, 141-159.	6.2	8
32	ASAXS study of the influence of sulfidation conditions and organic additives on sulfide slabs multiscale organization. Journal of Catalysis, 2021, 395, 412-424.	6.2	7
33	Advanced design of a x-ray absorption spectroscopy setup for measuring transition metals speciation in molten carbonates, hydroxides and hydrogenosulfates. Review of Scientific Instruments, 2022, 93, .	1.3	2
34	Natural suspended particulate matter (SPM) versus lab-controlled particles: Comparison of the reactivity and association mode of Zn. Applied Geochemistry, 2022, 140, 105286.	3.0	1