List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6306181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Copper Cofactor for the Ethylene Receptor ETR1 from Arabidopsis. Science, 1999, 283, 996-998.	6.0	591
2	Auxin and ethylene: collaborators or competitors?. Trends in Plant Science, 2012, 17, 181-195.	4.3	372
3	Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell, 2015, 163, 684-697.	13.5	306
4	Ethylene signaling in plants. Journal of Biological Chemistry, 2020, 295, 7710-7725.	1.6	295
5	The Arabidopsis EIN3 Binding F-Box Proteins EBF1 and EBF2 Have Distinct but Overlapping Roles in Ethylene Signaling. Plant Cell, 2007, 19, 509-523.	3.1	269
6	Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomatoâ€. Plant Journal, 2005, 41, 651-659.	2.8	188
7	Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Frontiers in Plant Science, 2014, 5, 744.	1.7	175
8	The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling typeâ $\in 2$ ACC synthase levels. Plant Journal, 2009, 57, 332-345.	2.8	166
9	Arabidopsis Seedling Growth Response and Recovery to Ethylene. A Kinetic Analysis. Plant Physiology, 2004, 136, 2913-2920.	2.3	164
10	Identification of Important Regions for Ethylene Binding and Signaling in the Transmembrane Domain of the ETR1 Ethylene Receptor of Arabidopsis. Plant Cell, 2007, 18, 3429-3442.	3.1	156
11	Short-Term Growth Responses to Ethylene in Arabidopsis Seedlings Are EIN3/EIL1 Independent. Plant Physiology, 2004, 136, 2921-2927.	2.3	140
12	Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli. Biochemistry, 1993, 32, 3282-3290.	1.2	132
13	Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis. Journal of Biological Chemistry, 2008, 283, 23801-23810.	1.6	131
14	Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB PLANTS, 2013, 5, plt010-plt010.	1.2	127
15	The Exoribonuclease XRN4 Is a Component of the Ethylene Response Pathway in Arabidopsis. Plant Cell, 2006, 18, 3047-3057.	3.1	126
16	The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress Â. Plant Physiology, 2014, 165, 1353-1366.	2.3	122
17	The Copper Transporter RAN1 Is Essential for Biogenesis of Ethylene Receptors in Arabidopsis. Journal of Biological Chemistry, 2010, 285, 37263-37270.	1.6	111
18	Dim background light and Cerenkov radiation from 32P block reversal of rhodopsin phosphorylation in intact frog retinal rods. Visual Neuroscience, 1991, 7, 499-503.	0.5	106

#	Article	IF	CITATIONS
19	Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana. Journal of Biological Chemistry, 2012, 287, 26094-26103.	1.6	100
20	The ethylene–receptor family from Arabidopsis : structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1405-1412.	1.8	95
21	History of Research on the Plant Hormone Ethylene. Journal of Plant Growth Regulation, 2015, 34, 809-827.	2.8	86
22	Ethylene Receptors Function as Components of High-Molecular-Mass Protein Complexes in Arabidopsis. PLoS ONE, 2010, 5, e8640.	1.1	76
23	How plants sense ethylene gas — The ethylene receptors. Journal of Inorganic Biochemistry, 2014, 133, 58-62.	1.5	72
24	Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Molecular BioSystems, 2011, 7, 2637.	2.9	71
25	The ethylene receptors: Complex perception for a simple gas. Plant Science, 2008, 175, 8-17.	1.7	70
26	New Clothes for the Jasmonic Acid Receptor COI1: Delayed Abscission, Meristem Arrest and Apical Dominance. PLoS ONE, 2013, 8, e60505.	1.1	68
27	Ethylene Stimulates Nutations That Are Dependent on the ETR1 Receptor. Plant Physiology, 2006, 142, 1690-1700.	2.3	66
28	Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. Frontiers in Plant Science, 2017, 8, 900.	1.7	61
29	Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor. Plant Physiology, 2016, 171, 2798-2809.	2.3	55
30	Ethylene Receptor ETHYLENE RECEPTOR1 Domain Requirements for Ethylene Responses in Arabidopsis Seedlings Â. Plant Physiology, 2011, 156, 417-429.	2.3	51
31	Ethylene Receptor Antagonists: Strained Alkenes Are Necessary but Not Sufficient. Chemistry and Biology, 2008, 15, 313-321.	6.2	49
32	Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 433.	1.7	46
33	The effects of Group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of <i>Arabidopsis thaliana</i> . FEBS Letters, 2007, 581, 5105-5109.	1.3	45
34	Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses. Plant Physiology, 2018, 176, 910-929.	2.3	45
35	The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC Plant Biology, 2015, 15, 157.	1.6	44
36	Inhibitors of Ethylene Biosynthesis and Signaling. Methods in Molecular Biology, 2017, 1573, 223-235.	0.4	41

#	Article	IF	CITATIONS
37	Identification of Transcriptional and Receptor Networks That Control Root Responses to Ethylene. Plant Physiology, 2018, 176, 2095-2118.	2.3	41
38	Reshaping Plant Biology: Qualitative and Quantitative Descriptors for Plant Morphology. Frontiers in Plant Science, 2017, 08, 117.	1.7	39
39	A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery Â. Plant Physiology, 2012, 160, 1567-1580.	2.3	36
40	Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genetics, 2017, 13, e1006703.	1.5	32
41	Phosphorylation of Non-bleached Rhodopsin in Intact Retinas and Living Frogs. Journal of Biological Chemistry, 1996, 271, 19826-19830.	1.6	30
42	Morphological and molecular characterization of ethylene binding inhibition in carnations. Postharvest Biology and Technology, 2013, 86, 272-279.	2.9	28
43	Reducing jasmonic acid levels causes <i>ein2</i> mutants to become ethylene responsive. FEBS Letters, 2013, 587, 226-230.	1.3	27
44	Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics. Frontiers in Plant Science, 2016, 7, 1308.	1.7	23
45	Canonical and noncanonical ethylene signaling pathways that regulate Arabidopsis susceptibility to the cyst nematode Heterodera schachtii. New Phytologist, 2019, 221, 946-959.	3.5	23
46	Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SIETR3 Accumulation in Never-Ripe Tomatoes. Frontiers in Plant Science, 2019, 10, 1054.	1.7	22
47	Roles of SIETR7, a newly discovered ethylene receptor, in tomato plant and fruit development. Horticulture Research, 2020, 7, 17.	2.9	22
48	Ethylene-dependent and -independent regulation of abscission. Stewart Postharvest Review, 0, 5, 1-10.	0.7	21
49	Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus) Tj ETQq1	1 0.784314 2.4	rgBT /Overlo
50	Identification of Regions in the Receiver Domain of the ETHYLENE RESPONSE1 Ethylene Receptor of Arabidopsis Important for Functional Divergence. Plant Physiology, 2015, 169, 219-232.	2.3	19
51	An Evolutionary Perspective on Ethylene Sensing in Microorganisms. Trends in Microbiology, 2019, 27, 193-196.	3.5	18
52	Ethylene stimulates growth and affects fatty acid content of Synechocystis sp. PCC 6803. Algal Research, 2017, 26, 234-239.	2.4	17
53	Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells, 2020, 9, 2526.	1.8	14
54	Ethylene causes transcriptomic changes in <i>Synechocystis</i> during phototaxis. Plant Direct, 2018, 2, e00048.	0.8	12

#	Article	IF	CITATIONS
55	Dominant gainâ€ofâ€function mutations in transmembrane domain <scp>III</scp> of <scp>ERS</scp> 1 and <scp>ETR</scp> 1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis. New Phytologist, 2015, 208, 442-455.	3.5	11
56	A role for two omponent signaling elements in the Arabidopsis growth recovery response to ethylene. Plant Direct, 2018, 2, e00058.	0.8	11
57	Ethanol, at physiological concentrations, affects ethylene sensing in tomato germinating seeds and seedlings. Plant Science, 2020, 291, 110368.	1.7	10
58	Recovery of ethylene sensitivity and responses in carnation petals post-treatment with 1-methylcyclopropene. Postharvest Biology and Technology, 2016, 121, 78-86.	2.9	9
59	Cyanobacteria Respond to Low Levels of Ethylene. Frontiers in Plant Science, 2019, 10, 950.	1.7	9
60	Biochemical Characterization of Plant Ethylene Receptors Following Transgenic Expression in Yeast. Methods in Enzymology, 2007, 422, 270-287.	0.4	6
61	Rapid Kinetic Analysis of Ethylene Growth Responses in Seedlings: New Insights into Ethylene Signal Transduction. Journal of Plant Growth Regulation, 2007, 26, 131-142.	2.8	5
62	Ethylene Receptors in Nonplant Species. Small Methods, 2020, 4, 1900266.	4.6	4
63	Time-Lapse Imaging to Examine the Growth Kinetics of Arabidopsis Seedlings in Response to Ethylene. Methods in Molecular Biology, 2017, 1573, 211-222.	0.4	3
64	Plant Ethylene Sensing and Signalling. 2-Oxoglutarate-Dependent Oxygenases, 2017, , 253-291.	0.8	3
65	Analysis of Ethylene Receptors: Ethylene-Binding Assays. Methods in Molecular Biology, 2017, 1573, 75-86.	0.4	2
66	Ethylene Receptors—Biochemical Events. , 2015, , 45-59.		2
67	Ethylene-Stimulated Nutations Do Not Require ETR1 Receptor Histidine Kinase Activity. Plant Signaling and Behavior, 2006, 1, 287-289.	1.2	0
68	Analysis of Ethylene Receptors: Assay for Histidine Kinase Activity. Methods in Molecular Biology, 2017, 1573, 87-99.	0.4	0