Valerio Licursi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6306158/publications.pdf

Version: 2024-02-01

29	749	14	26
papers	citations	h-index	g-index
30	30	30	1260 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics, 2019, 20, 545.	1.2	228
2	A paradigm shift in medicine: A comprehensive review of network-based approaches. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194416.	0.9	60
3	A Self-Organized PLT/Auxin/ARR-B Network Controls the Dynamics of Root Zonation Development in Arabidopsis thaliana. Developmental Cell, 2020, 53, 431-443.e23.	3.1	58
4	Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation. Cell Death and Disease, 2020, 11, 1045.	2.7	39
5	Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Scientific Reports, 2020, 10, 3361.	1.6	35
6	MiR-146a is over-expressed and controls IL-6 production in cystic fibrosis macrophages. Scientific Reports, 2019, 9, 16259.	1.6	33
7	Differential Expression of Hippocampal Circular RNAs in the BTBR Mouse Model for Autism Spectrum Disorder. Molecular Neurobiology, 2020, 57, 2301-2313.	1.9	26
8	Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB. Neurobiology of Disease, 2017, 103, 32-44.	2.1	25
9	Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B. Molecules, 2019, 24, 1739.	1.7	25
10	The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis. Cells, 2021, 10, 330.	1.8	24
11	An Overview of the Computational Models Dealing with the Regulatory ceRNA Mechanism and ceRNA Deregulation in Cancer. Methods in Molecular Biology, 2021, 2324, 149-164.	0.4	22
12	The COP9 signalosome is involved in the regulation of lipid metabolism and of transition metals uptake in <i>SaccharomycesÂcerevisiae</i> . FEBS Journal, 2014, 281, 175-190.	2.2	17
13	Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups. PLoS ONE, 2015, 10, e0133607.	1.1	17
14	Changes in the microsomal proteome of tomato fruit during ripening. Scientific Reports, 2019, 9, 14350.	1.6	17
15	The Role of Histone Lysine Methylation in the Response of Mammalian Cells to Ionizing Radiation. Frontiers in Genetics, 2021, 12, 639602.	1.1	17
16	A combination of PARP and CHK1 inhibitors efficiently antagonizes MYCN-driven tumors. Oncogene, 2021, 40, 6143-6152.	2.6	16
17	Dose-Dependent Onset of Regenerative Program in Neutron Irradiated Mouse Skin. PLoS ONE, 2011, 6, e19242.	1.1	13
18	MiRâ€142â€3p regulates synaptopathyâ€driven disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	13

#	Article	IF	CITATIONS
19	The Secret Garden of Neuronal circRNAs. Cells, 2020, 9, 1815.	1.8	12
20	Transcriptional response of <i>Hoxb</i> genes to retinoid signalling is regionally restricted along the neural tube rostrocaudal axis. Royal Society Open Science, 2017, 4, 160913.	1.1	11
21	X-ray irradiated cultures of mouse cortical neural stem/progenitor cells recover cell viability and proliferation with dose-dependent kinetics. Scientific Reports, 2020, 10, 6562.	1.6	10
22	DNMT3A epigenetically regulates key microRNAs involved in epithelial-to-mesenchymal transition in prostate cancer. Carcinogenesis, 2021, 42, 1449-1460.	1.3	10
23	The transcriptional response of mammalian cancer cells to irradiation is dominated by a cell cycle signature which is strongly attenuated in non-cancer cells and tissues. International Journal of Radiation Biology, 2012, 88, 822-829.	1.0	6
24	Biallelic variants in ZNF526 cause a severe neurodevelopmental disorder with microcephaly, bilateral cataract, epilepsy and simplified gyration. Journal of Medical Genetics, 2021, , jmedgenet-2020-107430.	1.5	5
25	Leptin induction following irradiation is a conserved feature in mammalian epithelial cells and tissues. International Journal of Radiation Biology, 2017, 93, 947-957.	1.0	4
26	Genome-Wide Gene Expression Analysis of Mtb-Infected DC Highlights the Rapamycin-Driven Modulation of Regulatory Cytokines via the mTOR/GSK-3β Axis. Frontiers in Immunology, 2021, 12, 649475.	2.2	4
27	General features of the transcriptional response of mammalian cells to low- and high-LET irradiation. Rendiconti Lincei, 2014, 25, 69-74.	1.0	2
28	Transcriptional modulations induced by proton irradiation in mice skin in function of adsorbed dose and distance. Journal of Radiation Research and Applied Sciences, 2021, 14, 260-270.	0.7	0
29	An integrative in-silico analysis discloses a novel molecular subset of colorectal cancer possibly eligible for immune checkpoint immunotherapy. Biology Direct, 2022, 17, 10.	1.9	0