
Andrea V MacciÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6305907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT. Astrophysical Journal, 2010, 710, 903-923.	4.5	943
2	Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3359-3374.	4.4	661
3	Concentration, spin and shape of dark matter haloes as a function of the cosmological model: <i>WMAP</i> 1, <i>WMAP</i> 3 and <i>WMAP</i> 5 results. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1940-1954.	4.4	563
4	Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment. Monthly Notices of the Royal Astronomical Society, 2007, 378, 55-71.	4.4	466
5	Making Galaxies In a Cosmological Context: the need for early stellar feedback. Monthly Notices of the Royal Astronomical Society, 2013, 428, 129-140.	4.4	361
6	The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Monthly Notices of the Royal Astronomical Society, 2014, 437, 415-423.	4.4	349
7	THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE-GALAXY SCALING RELATIONS. Astrophysical Journal, 2011, 734, 92.	4.5	291
8	NIHAO project – I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 83-94.	4.4	267
9	Towards a concordant model of halo occupation statistics. Monthly Notices of the Royal Astronomical Society, 2007, 376, 841-860.	4.4	237
10	Non-linear evolution of cosmological structures in warm dark matter models. Monthly Notices of the Royal Astronomical Society, 2012, 424, 684-698.	4.4	217
11	A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2986-2995.	4.4	217
12	Cores in warm dark matter haloes: a Catch 22 problem. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1105-1112.	4.4	204
13	NIHAO – IV: core creation and destruction in dark matter density profiles across cosmic time. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3542-3552.	4.4	201
14	A QUANTITATIVE EXPLANATION OF THE OBSERVED POPULATION OF MILKY WAY SATELLITE GALAXIES. Astrophysical Journal, 2009, 696, 2179-2194.	4.5	193
15	NIHAO – XI. Formation of ultra-diffuse galaxies by outflows. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L1-L6.	3.3	185
16	Thin disc, thick disc and halo in a simulated galaxy. Monthly Notices of the Royal Astronomical Society, 2012, 426, 690-700.	4.4	163
17	Luminosity function and radial distribution of Milky Way satellites in a ĥCDM Universe. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1995-2008.	4.4	161
18	The redshift evolution of Λ cold dark matter halo parameters: concentration, spin and shape. Monthly Notices of the Royal Astronomical Society, 2011, 411, 584-594.	4.4	159

#	Article	IF	CITATIONS
19	A fundamental problem in our understanding of low-mass galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2797-2812.	4.4	139
20	magicc haloes: confronting simulations with observations of the circumgalactic medium at z=0. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1270-1277.	4.4	119
21	DWARFS GOBBLING DWARFS: A STELLAR TIDAL STREAM AROUND NGC 4449 AND HIERARCHICAL GALAXY FORMATION ON SMALL SCALES. Astrophysical Journal Letters, 2012, 748, L24.	8.3	118
22	MaGICC thick disc – I. Comparing a simulated disc formed with stellar feedback to the Milky Way. Monthly Notices of the Royal Astronomical Society, 2013, 436, 625-634.	4.4	107
23	Radial distribution and strong lensing statistics of satellite galaxies and substructure using high-resolution ACDM hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2006, 366, 1529-1538.	4.4	99
24	NIHAO XV: the environmental impact of the host galaxy on galactic satellite and field dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1314-1341.	4.4	93
25	How cold is dark matter? Constraints from Milky Way satellites. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 404, L16-L20.	3.3	90
26	Universal IMF versus dark halo response in early-type galaxies: breaking the degeneracy with the Fundamental Plane. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2496-2511.	4.4	87
27	Formation of ultra-diffuse galaxies in the field and in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5272-5290.	4.4	87
28	Can gas prevent the destruction of thin stellar discs by minor mergers?. Monthly Notices of the Royal Astronomical Society, 0, 403, 1009-1019.	4.4	83
29	Hints on the nature of dark matter from the properties of Milky Way satellites. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 014-014.	5.4	83
30	Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 441, L6-L10.	3.3	82
31	Inspiraling halo accretion mapped in Ly α emission around a zÂâ^¼Â3 quasar. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3907-3940.	4.4	79
32	Is the dark-matter halo spin a predictor of galaxy spin and size?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4801-4815.	4.4	77
33	Halo Properties in Models with Dynamical Dark Energy. Astrophysical Journal, 2003, 599, 31-37.	4.5	76
34	The inner structure of haloes in cold+warm dark matter models. Monthly Notices of the Royal Astronomical Society, 2013, 428, 882-890.	4.4	75
35	The effects of a hot gaseous halo in galaxy major mergers. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3750-3770.	4.4	74
36	The most luminous quasars do not live in the most massive dark matter haloes at any redshift. Monthly Notices of the Royal Astronomical Society, 2013, 436, 315-326.	4.4	74

#	Article	IF	CITATIONS
37	NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2658-2675.	4.4	74
38	The Hubble Time Inferred from 10 Time Delay Lenses. Astrophysical Journal, 2006, 650, L17-L20.	4.5	73
39	The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 385, 2136-2142.	4.4	72
40	The Origin of Polar Ring Galaxies: Evidence for Galaxy Formation by Cold Accretion. Astrophysical Journal, 2006, 636, L25-L28.	4.5	71
41	The distribution of metals in cosmological hydrodynamical simulations of dwarf disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 425, 969-978.	4.4	65
42	NIHAO V: too big does not fail – reconciling the conflict between ĥCDM predictions and the circular velocities of nearby field galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L74-L78.	3.3	60
43	MaGICC baryon cycle: the enrichment history of simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3809-3818.	4.4	58
44	Modeling Dynamical Dark Energy. Astrophysical Journal, 2003, 599, 24-30.	4.5	56
45	The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey. Nature Astronomy, 2018, 2, 233-238.	10.1	56
46	NIHAO X: reconciling the local galaxy velocity function with cold dark matter via mock H <scp>i</scp> observations. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 463, L69-L73.	3.3	55
47	NIHAO VI. The hidden discs of simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 459, 467-486.	4.4	55
48	NIHAO project II: halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 663-680.	4.4	54
49	NIHAO XIII: Clumpy discs or clumpy light in high-redshift galaxies?. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3628-3649.	4.4	54
50	Constraining warm dark matter using QSO gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2007, 382, 1225-1232.	4.4	53
51	NIHAO-UHD: The properties of MW-like stellar disks in high resolution cosmological simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	53
52	NIHAO – XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in Ĵ›CDM. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4392-4403.	4.4	52
53	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3529-3539.	4.4	50
54	NIHAO – VIII. Circum-galactic medium and outflows – The puzzles of H iÂand O viÂgas distributions. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2796-2815.	4.4	48

#	Article	IF	CITATIONS
55	NIHAO XX: the impact of the star formation threshold on the cusp–core transformation of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 655-671.	4.4	46
56	CENTRAL MASS AND LUMINOSITY OF MILKY WAY SATELLITES IN THE $\hat{\mathbf{b}}$ COLD DARK MATTER MODEL. Astrophysical Journal, 2009, 692, L109-L112.	4.5	45
57	THE ENIGMATIC PAIR OF DWARF GALAXIES LEO IV AND LEO V: COINCIDENCE OR COMMON ORIGIN?. Astrophysical Journal, 2010, 710, 1664-1671.	4.5	45
58	Galaxy formation with local photoionization feedback – I. Methods. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2882-2893.	4.4	45
59	NIHAO XIX: how supernova feedback shapes the galaxy baryon cycle. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2511-2531.	4.4	44
60	The signature of dark energy on the local Hubble flow. Monthly Notices of the Royal Astronomical Society, 2005, 359, 941-948.	4.4	43
61	THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION. Astrophysical Journal, 2013, 767, 22.	4.5	42
62	The edge of galaxy formation – I. Formation and evolution of MW-satellite analogues before accretion. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2356-2366.	4.4	42
63	A model for core formation in dark matter haloes and ultra-diffuse galaxies by outflow episodes. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4523-4542.	4.4	42
64	WHAT SETS THE SIZES OF THE FAINTEST GALAXIES?. Astrophysical Journal, 2011, 743, 179.	4.5	41
65	3D simulations of the early stages of AGN jets: geometry, thermodynamics and backflow. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2903-2916.	4.4	41
66	The effect of low-mass substructures on the cusp lensing relation. Monthly Notices of the Royal Astronomical Society, 2006, 368, 599-608.	4.4	40
67	Properties of dark matter haloes and their correlations: the lesson from principal component analysis. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2388-2400.	4.4	40
68	The dependence of tidal stripping efficiency on the satellite and host galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3533-3542.	4.4	39
69	NIHAO XII: galactic uniformity in a \hat{P} CDM universe. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4937-4950.	4.4	39
70	Dynamical dark energy simulations: high accuracy power spectra at high redshift. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 014-014.	5.4	38
71	EVIDENCE FOR EARLY FILAMENTARY ACCRETION FROM THE ANDROMEDA GALAXY'S THIN PLANE OF SATELLITES. Astrophysical Journal, 2015, 809, 49.	4.5	37
72	SATELLITE ALIGNMENT. I. DISTRIBUTION OF SUBSTRUCTURES AND THEIR DEPENDENCE ON ASSEMBLY HISTORY FROM <i>N</i> BODY SIMULATIONS. Astrophysical Journal, 2014, 786, 8.	4.5	36

#	Article	IF	CITATIONS
73	Simulated ΛCDM analogues of the thin plane of satellites around the Andromeda galaxy are not kinematically coherent structures. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4348-4365.	4.4	35
74	Stars Behind Bars. I. The Milky Way's Central Stellar Populations. Astrophysical Journal, 2018, 861, 88.	4.5	35
75	A NEW CHANNEL FOR THE FORMATION OF KINEMATICALLY DECOUPLED CORES IN EARLY-TYPE GALAXIES. Astrophysical Journal Letters, 2015, 802, L3.	8.3	34
76	THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION. Astrophysical Journal Letters, 2014, 791, L33.	8.3	33
77	Radial Density Profiles of Timeâ€Đelay Lensing Galaxies. Astrophysical Journal, 2007, 667, 645-654.	4.5	32
78	Dark-matter halo profiles of a general cusp/core with analytic velocity and potential. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1005-1022.	4.4	32
79	The effects of a hot gaseous halo on disc thickening in galaxy minor mergers. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2045-2057.	4.4	30
80	Exploring the origin of low-metallicity stars in Milky-Way-like galaxies with the NIHAO-UHD simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3750-3762.	4.4	30
81	NIHAO – XVIII. Origin of the MOND phenomenology of galactic rotation curves in a ΛCDM universe. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1886-1899.	4.4	29
82	Dependence of the local reionization history on halo mass and environment: did Virgo reionize the Local Group?. Monthly Notices of the Royal Astronomical Society, 2007, 381, 367-376.	4.4	28
83	STRUCTURE FORMATION BY FIFTH FORCE: POWER SPECTRUM FROM N -BODY SIMULATIONS. Astrophysical Journal Letters, 2010, 712, L179-L183.	8.3	28
84	Non-linear predictions from linear theories in models with Dark Energy. New Astronomy, 2003, 8, 173-178.	1.8	27
85	Dark MaGICC: the effect of dark energy on disc galaxy formation. Cosmology does matter. Monthly Notices of the Royal Astronomical Society, 2014, 442, 176-186.	4.4	27
86	NIHAO III: the constant disc gas mass conspiracy. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1105-1116.	4.4	27
87	From discs to bulges: effect of mergers on the morphology of galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4347-4360.	4.4	27
88	The edge of galaxy formation – II. Evolution of Milky Way satellite analogues after infall. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3378-3389.	4.4	27
89	Introducing galactic structure finder: the multiple stellar kinematic structures of a simulated Milky Way mass galaxy. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4915-4930.	4.4	27
90	NIHAO XVI: the properties and evolution of kinematically selected discs, bulges, and stellar haloes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4424-4456.	4.4	27

#	Article	IF	CITATIONS
91	THE EFFECT OF COUPLED DARK ENERGY ON THE ALIGNMENT BETWEEN DARK MATTER AND GALAXY DISTRIBUTIONS IN CLUSTERS. Astrophysical Journal, 2011, 732, 112.	4.5	26
92	MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2014, 437, 293-304.	4.4	26
93	Strongly coupled dark energy cosmologies: preserving bCDM success and easing low-scale problems – II. Cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1371-1378.	4.4	26
94	NIHAO XXI: the emergence of low surface brightness galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2535-2548.	4.4	25
95	CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass, and radius. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3625-3645.	4.4	25
96	The Dekel-Zhao profile: a mass-dependent dark-matter density profile with flexible inner slope and analytic potential, velocity dispersion, and lensing properties. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2912-2933.	4.4	25
97	NIHAO – XXIII. Dark matter density shaped by black hole feedback. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 495, L46-L50.	3.3	24
98	The challenge of simultaneously matching the observed diversity of chemical abundance patterns in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3365-3387.	4.4	24
99	An observational test for star formation prescriptions in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1481-1487.	4.4	23
100	NIHAO – XXV. Convergence in the cusp-core transformation of cold dark matter haloes at high star formation thresholds. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2648-2661.	4.4	23
101	The response of dark matter haloes to elliptical galaxy formation: a new test for quenching scenarios. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2448-2465.	4.4	22
102	Creating a galaxy lacking dark matter in a dark matter-dominated universe. Monthly Notices of the Royal Astronomical Society, 2020, 501, 693-700.	4.4	22
103	Alas, the Dark Matter Structures Were Not That Trivial. Astrophysical Journal, 2008, 689, L33-L36.	4.5	21
104	INTERACTION BETWEEN DARK MATTER SUB-HALOS AND A GALACTIC GASEOUS DISK. Astrophysical Journal, 2012, 746, 10.	4.5	21
105	Comparing galactic satellite properties in hydrodynamical and N-body simulations. Monthly Notices of the Royal Astronomical Society, 2011, 413, 878-886.	4.4	20
106	Non-linear weak lensing forecasts. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 026-026.	5.4	19
107	Stars behind Bars II: A Cosmological Formation Scenario for the Milky Way's Central Stellar Structure. Astrophysical Journal, 2019, 874, 67.	4.5	19
108	Strong gravitational lensing and dynamical dark energy. Monthly Notices of the Royal Astronomical Society, 2005, 361, 1250-1256.	4.4	18

Andrea V Macci \tilde{A}^2

#	Article	IF	CITATIONS
109	Universal merger histories of dark-matter haloes. Monthly Notices of the Royal Astronomical Society, 0, 403, 984-995.	4.4	17
110	Numerical hydrodynamic simulations based on semi-analytic galaxy merger trees: method and Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1027-1044.	4.4	17
111	Î ³ -ray anisotropies from dark matter in the Milky Way: the role of the radial distribution. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1151-1156.	4.4	17
112	Mass of Clusters in Simulations. Astrophysical Journal, 2003, 588, 35-49.	4.5	16
113	On the dependence of galaxy morphologies on galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2968-2977.	4.4	16
114	Tracing the nature of dark energy with galaxy distribution. Monthly Notices of the Royal Astronomical Society, 2006, 366, 1346-1356.	4.4	15
115	Dissecting the spin distribution of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1338-1346.	4.4	15
116	Strongly coupled dark energy cosmologies: preserving ĥ CDM success and easing low scale problems – I. Linear theory revisited. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1002-1012.	4.4	15
117	NIHAO – XXII. Introducing black hole formation, accretion, and feedback into the NIHAO simulation suite. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5476-5489.	4.4	15
118	Galaxy formation with local photoionization feedback – II. Effect of X-ray emission from binaries and hot gas. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2516-2529.	4.4	14
119	Effects of coupled dark energy on the Milky Way and its satellites. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2490-2501.	4.4	13
120	NIHAO XXIV: rotation- or pressure-supported systems? Simulated Ultra Diffuse Galaxies show a broad distribution in their stellar kinematics. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4282-4292.	4.4	12
121	Star formation in mergers with cosmologically motivated initial conditions. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2984-3000.	4.4	11
122	The edge of galaxy formation III: the effects of warm dark matter on Milky Way satellites and field dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5400-5408.	4.4	11
123	A first estimate of the Milky Way dark matter halo spin. Astronomy and Astrophysics, 2022, 657, A15.	5.1	11
124	Local photoionization feedback effects on galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1518-1538.	4.4	10
125	THE TEMPERATURE OF HOT GAS IN GALAXIES AND CLUSTERS: BARYONS DANCING TO THE TUNE OF DARK MATTER. Astrophysical Journal, 2011, 734, 62.	4.5	9
126	NIHAO XVII: The diversity of dwarf galaxy kinematics and implications for the <scp>Hi</scp> velocity function. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	9

#	Article	IF	CITATIONS
127	Angular momentum evolution of bulge stars in disc galaxies in NIHAO. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5477-5491.	4.4	9
128	NIHAO VII: Predictions for the galactic baryon budget in dwarf to Milky Way mass haloes. Monthly Notices of the Royal Astronomical Society, 0, , stx066.	4.4	8
129	Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time. Astrophysical Journal, 2018, 868, 93.	4.5	8
130	Drivers of disc tilting I: correlations and possible drivers for Milky Way analogues. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5728-5738.	4.4	8
131	The star formation and AGN luminosity relation: predictions from a semi-analytical model. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3759-3767.	4.4	7
132	A deeper look into the structure of ĥCDM haloes: correlations between halo parameters from Einasto fits. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5259-5267.	4.4	7
133	NIHAO XXVI: Nature versus nurture, the Star Formation Main Sequence and the origin of its scatter. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	7
134	A Shallow Dark Matter Halo in Ultra-diffuse Galaxy AGC 242019: Are UDGs Structurally Similar to Low-surface-brightness Galaxies?. Astrophysical Journal Letters, 2021, 919, L1.	8.3	7
135	The diversity of spiral galaxies explained. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3510-3531.	4.4	7
136	The tilting rate of the Milky Way's disc. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4095-4101.	4.4	6
137	Simulations of satellite tidal debris in the Milky Way halo. Astronomy and Astrophysics, 2020, 636, A106.	5.1	6
138	NIHAO-LG: the uniqueness of Local Group dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6134-6149.	4.4	6
139	Abundance matching tested on small scales with galaxy dynamics. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L101-L105.	3.3	5
140	Cold stream stability during minor mergers. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L85-L89.	3.3	3
141	Limber equation for luminosity dependent correlations. New Astronomy, 1999, 4, 557-562.	1.8	2
142	DARK MATTER ANGULAR MOMENTUM PROFILE FROM THE JEANS EQUATION. Astrophysical Journal, 2009, 694, 893-901.	4.5	2
143	Clues to the nature of dark matter from first galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 487-496.	4.4	2
144	Constraining Λ Using Cluster Quadrupoles. Astrophysical Journal, 2002, 564, 1-7.	4.5	2

#	Article	IF	CITATIONS
145	Sparse Identification of Variable Star Dynamics. Astrophysical Journal, 2022, 930, 161.	4.5	2
146	AN ATTRACTOR FOR THE DYNAMICAL STATE OF THE INTRACLUSTER MEDIUM. Astrophysical Journal Letters, 2012, 746, L28.	8.3	1
147	Quenching vs. Quiescence: forming realistic massive ellipticals with a simple starvation model. Monthly Notices of the Royal Astronomical Society, 0, , stx005.	4.4	1
148	Using artificial intelligence and real galaxy images to constrain parameters in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2135-2141.	4.4	1
149	NIHAO – XXVIII. Collateral effects of AGN on dark matter concentration and stellar kinematics. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5307-5319.	4.4	1
150	NIHAO – XXVII. Crossing the green valley. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5296-5306.	4.4	1
151	On the origin and history of stars in spiral galaxies. , 2010, , .		0
152	Thin Planes of Satellites in $\hat{\rm b}$ CDM are not kinematically coherent. Proceedings of the International Astronomical Union, 2016, 11, 40-41.	0.0	0
153	NIHAO-UHD: High-resolution Simulations of MW mass galaxies. Proceedings of the International Astronomical Union, 2017, 13, 209-212.	0.0	0
154	Quantifying inhomogeneities in the HI distributions of simulated galaxies. Journal of Physics: Conference Series, 2019, 1258, 012023.	0.4	0