
Gustavo Fidel Gutiérrez-LÃ3pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6305876/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoencapsulation: A New Trend in Food Engineering Processing. Food Engineering Reviews, 2010, 2, 39-50.	3.1	185
2	Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. Food Engineering Reviews, 2012, 4, 224-243.	3.1	120
3	Zeta Potential of Food Matrices. Food Engineering Reviews, 2018, 10, 113-138.	3.1	115
4	Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers, 2012, 87, 289-299.	5.1	105
5	Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis. Carbohydrate Polymers, 2013, 98, 1449-1457.	5.1	76
6	Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocolloids, 2018, 80, 177-185.	5.6	72
7	Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. Journal of Food Engineering, 2012, 112, 29-37.	2.7	63
8	Evaluation of Image Analysis Tools for Characterization of Sweet Bread Crumb Structure. Food and Bioprocess Technology, 2012, 5, 474-484.	2.6	57
9	Quality classification of corn tortillas using computer vision. Journal of Food Engineering, 2010, 101, 357-364.	2.7	42
10	Stability and characterization of O/W free phytosterols nanoemulsions formulated with an enzymatically modified emulsifier. LWT - Food Science and Technology, 2019, 107, 151-157.	2.5	32
11	Shrinkage and Deformation of <i>Agave atrovirens</i> Karw Tissue during Convective Drying: Influence of Structural Arrangements. Drying Technology, 2011, 29, 612-623.	1.7	31
12	Effect of high hydrostatic pressure on bovine α-lactalbumin functional properties. Journal of Food Engineering, 2008, 87, 363-370.	2.7	28
13	Micropores and Their Relationship with Carotenoids Stability: A New Tool to Study Preservation of Solid Foods. Food and Bioprocess Technology, 2014, 7, 1160-1170.	2.6	28
14	Chemical components distribution and morphology of microcapsules of paprika oleoresin by microscopy and spectroscopy. Food Hydrocolloids, 2018, 81, 6-14.	5.6	27
15	Viability of microencapsulated <i>Bifidobacterium animalis</i> ssp. <i>lactis</i> BB12 in kefir during refrigerated storage. International Journal of Dairy Technology, 2010, 63, 431-436.	1.3	26
16	Dough and crumb grain changes during mixing and fermentation and their relation with extension properties and bread quality of yeasted sweet dough. International Journal of Food Science and Technology, 2010, 45, 530-539.	1.3	26
17	Effects of microfluidisation process on the amounts and distribution of encapsulated and non-encapsulated α-tocopherol microcapsules obtained by spray drying. Food Research International, 2014, 63, 2-8.	2.9	25
18	Modification of the soy protein isolate surface at nanometric scale and its effect on physicochemical properties. Journal of Food Engineering, 2016, 168, 105-112.	2.7	25

#	Article	IF	CITATIONS
19	Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane. Environmental Research, 2015, 136, 424-434.	3.7	23
20	Effects of Storage Temperature and Water Activity on the Degradation of Carotenoids Contained in Microencapsulated Chili Extract. Drying Technology, 2014, 32, 1435-1447.	1.7	21
21	Microencapsulation of Vanilla Oleoresin (V. planifolia Andrews) by Complex Coacervation and Spray Drying: Physicochemical and Microstructural Characterization. Foods, 2020, 9, 1375.	1.9	20
22	Microstructural characteristics and physical properties of corn-based extrudates affected by the addition of millet, sorghum, quinoa and canary seed flour. Food Structure, 2020, 25, 100140.	2.3	19
23	Multifractal breakage patterns of thick maltodextrin agglomerates. Powder Technology, 2014, 266, 440-446.	2.1	18
24	Application of Osmotic Dehydration Processes to Produce Apple Slices Enriched with l² -Carotene. Drying Technology, 2008, 26, 1265-1271.	1.7	17
25	Digital image analysis and fractal metrics as potential tools to monitor colour changes in fresh-cut papaya (<i>Carica papaya</i> L.). International Journal of Food Properties, 2017, 20, S177-S189.	1.3	16
26	Preparation of surfactant-free emulsions using amaranth starch modified by reactive extrusion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125550.	2.3	15
27	Fabrication of Nanoemulsions by Microfluidization. , 2018, , 207-232.		13
28	Quality parameters and morphometric characterization of hot-air popcorn as related to moisture content. Drying Technology, 2020, 39, 77-89.	1.7	12
29	Components interactions and changes at molecular level in maize flour-based blends as affected by the extrusion process. A multi-analytical approach. Journal of Cereal Science, 2021, 99, 103186.	1.8	12
30	Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media. Journal of Nanomaterials, 2016, 2016, 1-19.	1.5	11
31	Multifractal breakage pattern of tortilla chips as related to moisture content. Journal of Food Engineering, 2016, 168, 96-104.	2.7	11
32	Influence of shape and dispersion media of titanium dioxide nanostructures on microvessel network and ossification. Colloids and Surfaces B: Biointerfaces, 2018, 162, 193-201.	2.5	11
33	Image Processing Methods and Fractal Analysis for Quantitative Evaluation of Size, Shape, Structure and Microstructure in Food Materials. Food Engineering Series, 2008, , 277-286.	0.3	11
34	Preparation and characterization of canola oil-in-water Pickering emulsions stabilized by barley starch nanocrystals. Journal of Food Engineering, 2022, 326, 111037.	2.7	11
35	A traditional intermediate moisture meat: Beef cecina. Meat Science, 1994, 36, 365-370.	2.7	10
36	Effect of Soybean 7S Protein Fractions, Obtained from Germinated and Nongerminated Seeds, on Dough Rheological Properties and Bread Quality. Food and Bioprocess Technology, 2012, 5, 226-234.	2.6	10

#	Article	IF	CITATIONS
37	Morphometric Analysis of Transverse Surface of Fractured Maltodextrin Agglomerates. International Journal of Food Properties, 2016, 19, 2451-2462.	1.3	9
38	Downregulation of proinflammatory liver gene expression by Justicia spicigera and kaempferitrin in a murine model of obesity-induced by a high-fat diet. Journal of Functional Foods, 2020, 65, 103781.	1.6	9
39	Morphological characterization of the growing front of Rhizopus oligosporus in solid media. Journal of Food Engineering, 2010, 101, 309-317.	2.7	8
40	High Shear Methods to Produce Nano-sized Food Related to Dispersed Systems. Food Engineering Series, 2015, , 145-161.	0.3	7
41	Chemical Lipophilization of Bovine α-Lactalbumin with Saturated Fatty Acyl Residues: Effect on Structure and Functional Properties. Journal of Agricultural and Food Chemistry, 2019, 67, 3256-3265.	2.4	7
42	Effect of pumping and atomisation on the stability of oil/water emulsions. Journal of Food Engineering, 2022, 327, 111056.	2.7	7
43	Water droplet spreading and recoiling upon contact with thick–compact maltodextrin agglomerates. Journal of the Science of Food and Agriculture, 2011, 91, 2594-2600.	1.7	6
44	Morphometric analysis and tissue structural continuity evaluation of senescence progression in fresh cut papaya (Carica papaya L.). Journal of Food Engineering, 2018, 216, 107-119.	2.7	6
45	Characterisation of the global breakage pattern of maltodextrin agglomerates. Powder Technology, 2019, 343, 362-365.	2.1	6
46	Correlation among PME activity, viscoelastic, and structural parameters for Carica papaya edible tissue along ripening. Journal of Food Science, 2020, 85, 1805-1814.	1.5	6
47	Fractal Microstructure of Foods. Food Engineering Reviews, 2022, 14, 1-19.	3.1	6
48	Removal of Methylene Blue from Aqueous Solutions by Using Nance (Byrsonima crassifolia) Seeds and Peels as Natural Biosorbents. Journal of Chemistry, 2021, 2021, 1-13.	0.9	5
49	Biochemical changes in an intermediate moisture cecina-like meat during storage. Meat Science, 1995, 40, 387-395.	2.7	3
50	Safety Studies of Metal Oxide Nanoparticles Used in Food Industry. Food Engineering Series, 2015, , 243-265.	0.3	3
51	Indentation Technique: Overview and Applications in Food Science. Food Engineering Series, 2015, , 81-98.	0.3	3
52	Effect of borojo (<i>Borojoa patinoi</i> Cuatrecasas) threeâ€phase composition and gum arabic on the glass transition temperature. Journal of the Science of Food and Agriculture, 2016, 96, 1027-1036.	1.7	3
53	2-Dimension hot-air popcorn morphology development. Journal of Food Engineering, 2019, 259, 29-33.	2.7	3
54	Thermal transitions and enthalpic relaxations as related to the stability of microencapsulated paprika powders. Journal of Food Engineering, 2019, 245, 88-95.	2.7	3

#	Article	IF	CITATIONS
55	Assessing the product quality of mango slices treated with osmotic and microwave drying by means of image, microstructural, and multivariate analyses. Drying Technology, 2023, 41, 363-377.	1.7	3
56	Squalene-Rich Amaranth Oil Pickering Emulsions Stabilized by Native α-Lactalbumin Nanoparticles. Foods, 2022, 11, 1998.	1.9	3
57	Hydrodynamic Characterization of the Formation of Alpha-Tocopherol Nanoemulsions in a Microfluidizer. Food Engineering Series, 2015, , 163-175.	0.3	2
58	Food Engineering in Ibero-America: the Contribution of the CYTED Program (1986–2005). Food Engineering Reviews, 2018, 10, 187-197.	3.1	2
59	Food Nano- and Microconjugated Systems: The Case of Albumin–Capsaicin. Food Engineering Series, 2015, , 187-203.	0.3	1
60	Multiscale and Nanostructural Approach to Fruits Stability. Food Engineering Series, 2015, , 267-281.	0.3	1
61	Microfluidization in Nano-Food Engineering. Food Engineering Series, 2020, , 153-175.	0.3	1
62	Effective Drying Zones and Nonlinear Dynamics in a Laboratory Spray Dryer. Food Engineering Series, 2010, , 515-534.	0.3	0
63	Scientific and Technological Cooperation in the Agri-Food Sector: The Case of the CYTED Program. Food Engineering Series, 2008, , 1-8.	0.3	0
64	Towards an Integrated Approach to Food Engineering: Structure-Function Relationships And Convective Drying. Food Engineering Series, 2008, , 255-263.	0.3	0