Hrvoje Jasak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6305405/publications.pdf

Version: 2024-02-01

108	6,644	25	78
papers	citations	h-index	g-index
109	109	109	5161 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Numerical analysis of self-propulsion flow characteristics in model scale. Ocean Engineering, 2022, 259, 111885.	4.3	6
2	Parallelisation of selective algebraic multigrid for block–pressure–velocity system in OpenFOAM. Computer Physics Communications, 2021, 258, 107529.	7. 5	7
3	Implicitly coupled phase fraction equations for polydisperse flows. International Journal for Numerical Methods in Fluids, 2021, 93, 1627-1644.	1.6	1
4	Approach on simulation of solidification and shrinkage of gravity cast salt cores. Simulation Modelling Practice and Theory, 2021, 107, 102231.	3.8	4
5	A Eulerian Multi-Fluid Model for High-Speed Evaporating Sprays. Processes, 2021, 9, 941.	2.8	2
6	Numerical simulations of hydrodynamic loads and structural responses of a Pre-Swirl Stator. International Journal of Naval Architecture and Ocean Engineering, 2021, 13, 804-816.	2.3	11
7	Optimizing wave-generation and wave-damping in 3D-flow simulations with implicit relaxation-zones. Coastal Engineering, 2021, 171, 104035.	4.0	5
8	Finite Volume method for general compressible naval hydrodynamics. Ocean Engineering, 2020, 196, 106773.	4.3	10
9	Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM. Energies, 2020, 13, 4740.	3.1	7
10	Numerical Modeling of Transcritical and Supercritical Fuel Injections Using a Multi-Component Two-Phase Flow Model. Energies, 2020, 13, 5676.	3.1	21
11	CFD simulations for surf-riding occurrence assessment. Ocean Engineering, 2020, 218, 107975.	4.3	8
12	CFD simulation of loadings on circular duct in calm water and waves. Ships and Offshore Structures, 2020, 15, S110-S122.	1.9	7
13	Launching of ships from horizontal berth by tipping tables – CFD simulation of wave generation. Engineering Structures, 2020, 210, 110343.	5.3	5
14	Practical Computational Fluid Dynamics with the Finite Volume Method. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2020, , 103-161.	0.6	13
15	CFD validation and grid sensitivity studies of full scale ship self propulsion. International Journal of Naval Architecture and Ocean Engineering, 2019, 11, 33-43.	2.3	75
16	Application of the Harmonic Balance method for regime change prediction using Francis-99 test case. Journal of Physics: Conference Series, 2019, 1296, 012010.	0.4	0
17	CFD simulations of violent breaking wave impacts on a vertical wall using a two-phase compressible solver. Coastal Engineering, 2019, 154, 103564.	4.0	27
18	Implicitly coupled phase fraction equations for the Eulerian multi-fluid model. Computers and Fluids, 2019, 192, 104277.	2.5	7

#	Article	IF	Citations
19	Implicitly Coupled Pressure–Velocity Solver. , 2019, , 249-267.		3
20	Two-Way Coupled Eulerian–Eulerian Simulations of a Viscous Snow Phase with Turbulent Drag. , 2019, , 491-508.		0
21	Enhanced Turbomachinery Capabilities for Foam-Extend: Development and Validation., 2019, , 145-155.		О
22	Harmonic Balance Method for Turbomachinery Applications. , 2019, , 223-233.		0
23	The Harmonic Balance Method for Temporally Periodic Free Surface Flows. , 2019, , 481-489.		О
24	Analysis of Transients in Francis Turbine Using Fourier Methods. , 2019, , .		2
25	OpenFOAM®., 2019, , .		7
26	IsoAdvector: Geometric VOF on General Meshes. , 2019, , 281-296.		7
27	Modeling of droplet detachment using dynamic contact angles in polymer electrolyte fuel cell gas channels. International Journal of Hydrogen Energy, 2019, 44, 11088-11096.	7.1	27
28	A coupled finite volume flow solver for the solution of incompressible viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 2019, 265, 99-115.	2.4	14
29	Accurate assessment of ship-propulsion characteristics using CFD. Ocean Engineering, 2019, 175, 149-162.	4.3	26
30	Parallel block–selective algebraic multigrid in foamâ€extend. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900424.	0.2	О
31	Green sea loads in irregular waves with Finite Volume method. Ocean Engineering, 2019, 171, 554-564.	4.3	15
32	Implementation of an implicit pressure–velocity coupling for the Eulerian multi-fluid model. Computers and Fluids, 2019, 181, 188-207.	2.5	8
33	A parallel dual-grid multiscale approach to CFD–DEM couplings. Journal of Computational Physics, 2019, 378, 708-722.	3.8	17
34	On the dynamic behavior of rising droplets. International Journal of Multiphase Flow, 2019, 110, 165-178.	3.4	13
35	Added Mass Partitioned Fluid–Structure Interaction Solver Based on a Robin Boundary Condition for Pressure. , 2019, , 1-22.		2

A Blind Comparative Study of Focused Wave Interactions with a Fixed FPSO-like Structure (CCP-WSI) Tj ETQq0 0 0 $\frac{1}{0.8}$ T /Overlock 10 Tf $\frac{1}{0.8}$

2

36

#	Article	IF	CITATIONS
37	Wave Impact Loads Prediction With Compressible Air Effects Using CFD., 2019,,.		O
38	Added Resistance CFD Analysis of the KVLCC2 With the Naval Hydro Pack. , 2019, , .		0
39	Harmonic Balance developments in OpenFOAM. Computers and Fluids, 2018, 172, 632-643.	2.5	6
40	Block-selective algebraic multigrid for implicitly coupled pressure-velocity system. Computers and Fluids, 2018, 167, 100-110.	2.5	18
41	Harmonic Balance method for nonlinear and viscous free surface flows. Ocean Engineering, 2018, 157, 164-179.	4.3	4
42	Consistent second-order time-accurate non-iterative PISO-algorithm. Computers and Fluids, 2018, 166, 78-85.	2.5	20
43	The Compressible Harmonic Balance Method for Turbomachinery., 2018,,.		1
44	Coupling boundary condition for high-intensity electric arc attached on a non-homogeneous refractory cathode. Computer Physics Communications, 2018, 222, 31-45.	7.5	10
45	OpenFOAM Finite Volume Solver for Fluid-Solid Interaction. Transactions of Famena, 2018, 42, 1-31.	0.6	58
46	Stability Issues of Fuel Cell Models in the Activation and Concentration Regimes. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	2.1	12
47	A stable numerical implementation of integral viscoelastic models in the OpenFOAM®computational library. Computers and Fluids, 2018, 172, 728-740.	2.5	8
48	Lubricated elastoplastic contact model for metal forming processes in OpenFOAM. Computers and Fluids, 2018, 172, 226-240.	2.5	9
49	CFD verification and validation of green sea loads. Ocean Engineering, 2018, 148, 500-515.	4.3	17
50	A moving mesh interface tracking method for simulation of liquid–liquid systems. Journal of Computational Physics, 2017, 334, 419-441.	3.8	11
51	A Non-Linear Harmonic Balance Method for Turbomachinery Applications., 2017,,.		0
52	Implementation of the Ghost Fluid Method for free surface flows in polyhedral Finite Volume framework. Computers and Fluids, 2017, 153, 1-19.	2.5	72
53	A framework for efficient irregular wave simulations using Higher Order Spectral method coupled with viscous two phase model. Journal of Ocean Engineering and Science, 2017, 2, 253-267.	4.3	18
54	Enhanced coupling of solid body motion and fluid flow in finite volume framework. Ocean Engineering, 2017, 143, 295-304.	4.3	22

#	Article	IF	Citations
55	Three dimensional modeling of free surface flow and sediment transport with bed deformation using automatic mesh motion. Environmental Modelling and Software, 2017, 97, 303-317.	4.5	9
56	Two-way coupled Eulerian-Eulerian simulations of drifting snow with viscous treatment of the snow phase. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169, 67-76.	3.9	8
57	Accurate green water loads calculation using naval hydro pack. IOP Conference Series: Materials Science and Engineering, 2017, 276, 012011.	0.6	0
58	The breakup of intravascular microbubbles and its impact on the endothelium. Biomechanics and Modeling in Mechanobiology, 2017, 16, 611-624.	2.8	9
59	Monolithic coupling of the pressure and rigid body motion equations in computational marine hydrodynamics. Journal of Marine Science and Application, 2017, 16, 375-381.	1.7	1
60	Attitudes of the Lifestyle of Health and Sustainability Segment in Hungary. Sustainability, 2017, 9, 1763.	3.2	27
61	CFD Analysis in Subsea and Marine Technology. IOP Conference Series: Materials Science and Engineering, 2017, 276, 012009.	0.6	6
62	Benchmark simulations of flow past rigid bodies using an open-source, sharp interface immersed boundary method. Progress in Computational Fluid Dynamics, 2017, 1, 1.	0.2	2
63	Implementation and Validation of the Harmonic Balance Method for Temporally Periodic Non–Linear Flows. , 2016, , .		0
64	A computational method for sharp interface advection. Royal Society Open Science, 2016, 3, 160405.	2.4	225
65	Decomposition model for naval hydrodynamic applications, Part I: Computational method. Ocean Engineering, 2016, 121, 37-46.	4.3	41
66	A block-coupled Finite Volume methodology for linear elasticity and unstructured meshes. Computers and Structures, 2016, 175, 100-122.	4.4	54
67	Decomposition model for naval hydrodynamic applications, Part II: Verification and validation. Ocean Engineering, 2016, 121, 76-88.	4.3	29
68	Technical and Economic Readiness Review of CFD-Based Numerical Wave Basin for Offshore Floater Design. , 2016, , .		6
69	Finite Volume Implementation of the Harmonic Balance Method for Periodic Non-Linear Flows. , 2016, , .		9
70	Open-source computational model of a solid oxide fuel cell. Computer Physics Communications, 2016, 200, 15-26.	7.5	53
71	Implementation of integral viscoelastic constitutive models in OpenFOAM® computational library. AIP Conference Proceedings, 2015, , .	0.4	1
72	Application of a Riemann Solver Unstructured Finite Volume Method to Combustion Instabilities. Journal of Propulsion and Power, 2015, 31, 937-950.	2.2	2

#	Article	IF	CITATIONS
73	Numerical Simulation of Wave Loading on Static Offshore Structures. Springer Tracts in Mechanical Engineering, 2015, , 95-105.	0.3	8
74	Modeling the interaction of microbubbles: Effects of proximity, confinement, and excitation amplitude. Physics of Fluids, 2014, 26, .	4.0	9
75	Evaluation of an improved mixing plane interface for OpenFOAM. IOP Conference Series: Earth and Environmental Science, 2014, 22, 022004.	0.3	10
76	A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Computers and Fluids, 2013, 87, 132-143.	2.5	94
77	Entropy Stable Multi-dimensional Dissipation Function for the Roe Scheme on Unstructured Meshes. , 2012, , .		0
78	On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood–brain barrier. Physics in Medicine and Biology, 2012, 57, 1019-1045.	3.0	32
79	A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers and Fluids, 2012, 55, 70-84.	2.5	132
80	Advances on Viscoelastic Fluid Flow Simulation. , 2012, , 233-265.		0
81	Numerical simulation of viscoelastic two-phase flows using openFOAM®. Chemical Engineering Science, 2011, 66, 5487-5496.	3.8	50
82	CFD analysis of cooling effects in H2-fed solid oxide fuel cells. Journal of Power Sources, 2011, 196, 7290-7301.	7.8	15
83	OpenFOAM Turbo Tools: From General Purpose CFD to Turbomachinery Simulations. , 2011, , .		20
84	Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 2010, 36, 284-292.	3.4	108
85	Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1625-1636.	2.4	107
86	Viscoelastic fluid analysis in internal and in free surface flows using the software OpenFOAM. Computers and Chemical Engineering, 2010, 34, 1984-1993.	3.8	35
87	Simulation of Free Surface Viscoelastic Fluid Flow Using the viscoelasticInterFoam Solver. Computer Aided Chemical Engineering, 2010, , 31-36.	0.5	10
88	Vorticity Confinement method applied to flow around an Ahmed body and comparison with experiments. WIT Transactions on Engineering Sciences, 2010, , .	0.0	0
89	Multi-dimensional modeling of the air/fuel mixture formation process in a PFI engine for motorcycle applications. , 2009, , .		19
90	OpenFOAM: Open source CFD in research and industry. International Journal of Naval Architecture and Ocean Engineering, 2009, 1, 89-94.	2.3	87

#	Article	IF	CITATIONS
91	Viscoelastic Flow Simulation: Development of a Methodology of Analysis Using the Software OpenFOAM and Differential Constitutive Equations. Computer Aided Chemical Engineering, 2009, , 915-920.	0.5	18
92	Dynamic Mesh Handling in OpenFOAM., 2009, , .		76
93	OpenFOAM: Open source CFD in research and industry. International Journal of Naval Architecture and Ocean Engineering, 2009, 1, 89-94.	2.3	122
94	Acceleration and Stabilization of Algebraic Multigrid Solver Applied to Incompressible Flow Problems. , 2007, , .		3
95	A strength implicit correction scheme for the viscous-plastic sea ice model. Ocean Modelling, 2004, 7, 111-133.	2.4	20
96	Element residual error estimate for the finite volume method. Computers and Fluids, 2003, 32, 223-248.	2.5	23
97	RESIDUAL ERROR ESTIMATE FOR THE FINITE-VOLUME METHOD. Numerical Heat Transfer, Part B: Fundamentals, 2001, 39, 1-19.	0.9	21
98	Application of the finite volume method and unstructured meshes to linear elasticity. International Journal for Numerical Methods in Engineering, 2000, 48, 267-287.	2.8	172
99	AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 3: TURBULENT FLOW APPLICATIONS. Numerical Heat Transfer, Part B: Fundamentals, 2000, 38, 273-290.	0.9	17
100	AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 1: A-POSTERIORI ERROR ESTIMATES. Numerical Heat Transfer, Part B: Fundamentals, 2000, 38, 237-256.	0.9	40
101	AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 2: ADAPTIVE MESH REFINEMENT AND COARSENING. Numerical Heat Transfer, Part B: Fundamentals, 2000, 38, 257-271.	0.9	38
102	High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids, 1999, 31, 431-449.	1.6	466
103	High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids, 1999, 31, 431-449.	1.6	7
104	A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 1998, 12, 620.	0.5	3,639
105	Rapid CFD Simulation of Internal Combustion Engines. , 0, , .		14
106	In-Cylinder CFD Simulation Using a C++ Object-Oriented Toolkit. , 0, , .		32
107	Automatic Mesh Motion with Topological Changes for Engine Simulation. , 0, , .		44
108	Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend., 0,,.		2