
Michael H Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6305113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variation in Retinol Utilization Rate with Vitamin A Status in the Rat. Journal of Nutrition, 1987, 117, 694-703.	1.3	103
2	Plasma Thyroid Hormone Kinetics Are Altered in Iron-Deficient Rats. Journal of Nutrition, 1998, 128, 1401-1408.	1.3	77
3	Kinetic Analysis Shows That Iron Deficiency Decreases Liver Vitamin A Mobilization in Rats. Journal of Nutrition, 2000, 130, 1291-1296.	1.3	67
4	Stable isotope dilution techniques for assessing vitamin A status and bioefficacy of provitamin A carotenoids in humans. Public Health Nutrition, 2005, 8, 596-607.	1.1	60
5	The Application of Compartmental Analysis to Research in Nutrition. Annual Review of Nutrition, 1990, 10, 41-61.	4.3	59
6	Chylomicron Margination, Lipolysis, and Vitamin A Uptake in the Lactating Rat Mammary Gland: Implications for Milk Retinoid Content. Experimental Biology and Medicine, 2004, 229, 46-55.	1.1	53
7	Vitamin A Turnover in Rats as Influenced by Vitamin A Status. Journal of Nutrition, 1981, 111, 1135-1144.	1.3	52
8	Population-based plasma kinetics of an oral dose of [2H4]retinyl acetate among preschool-aged, Peruvian children. American Journal of Clinical Nutrition, 2003, 77, 681-686.	2.2	51
9	Use of a "Super-child―Approach to Assess the Vitamin A Equivalence of Moringa oleifera Leaves, Develop a Compartmental Model for Vitamin A Kinetics, and Estimate Vitamin A Total Body Stores in Young Mexican Children. Journal of Nutrition, 2017, 147, 2356-2363.	1.3	49
10	Model-based compartmental analysis indicates a reduced mobilization of hepatic vitamin A during inflammation in rats. Journal of Lipid Research, 2007, 48, 904-913.	2.0	48
11	Kinetic Analysis Shows that Vitamin A Disposal Rate in Humans Is Positively Correlated with Vitamin A Stores ,. Journal of Nutrition, 2008, 138, 971-977.	1.3	46
12	Vitamin A Intake Affects the Contribution of Chylomicrons vs. Retinol-Binding Protein to Milk Vitamin A in Lactating Rats. Journal of Nutrition, 2001, 131, 1279-1282.	1.3	45
13	Vitamin A Intake and Status Influence Retinol Balance, Utilization and Dynamics in Rats ,. Journal of Nutrition, 1994, 124, 2477-2485.	1.3	43
14	Use of Modelâ€Based Compartmental Analysis to Study Vitamin A Kinetics and Metabolism. Vitamins and Hormones, 2007, 75, 161-195.	0.7	41
15	Influence of Dietary Fat and Cholesterol on Milk Lipids and on Cholesterol Metabolism in the Rat. Journal of Nutrition, 1981, 111, 276-286.	1.3	39
16	A Retinol Isotope Dilution Equation Predicts Both Group and Individual Total Body Vitamin A Stores in Adults Based on Data from an Early Postdosing Blood Sample. Journal of Nutrition, 2016, 146, 2137-2142.	1.3	35
17	Plasma Retinol Is a Major Determinant of Vitamin A Utilization in Rats. Journal of Nutrition, 1998, 128, 1767-1773.	1.3	33
18	The induction and activation of STAT1 by all-trans-retinoic acid are mediated by RARÎ ² signaling pathways in breast cancer cells. Oncogene, 1999, 18, 6725-6732.	2.6	33

MICHAEL H GREEN

#	Article	IF	CITATIONS
19	Current Capabilities and Limitations of Stable Isotope Techniques and Applied Mathematical Equations in Determining Whole-Body Vitamin A Status. Food and Nutrition Bulletin, 2016, 37, S87-S103.	0.5	33
20	Use of Model-Based Compartmental Analysis to Study Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Vitamin A Kinetics in Rats. Toxicological Sciences, 1998, 44, 1-13.	1.4	31
21	Vitamin A-Fortified Milk Increases Total Body Vitamin A Stores in Mexican Preschoolers. Journal of Nutrition, 2013, 143, 221-226.	1.3	29
22	Plasma Retinol Kinetics and β-Carotene Bioefficacy Are Quantified by Model-Based Compartmental Analysis in Healthy Young Adults with Low Vitamin A Stores. Journal of Nutrition, 2016, 146, 2129-2136.	1.3	29
23	Use of Model-Based Compartmental Analysis and a Super-Child Design to Study Whole-Body Retinol Kinetics and Vitamin A Total Body Stores in Children from 3 Lower-Income Countries. Journal of Nutrition, 2020, 150, 411-418.	1.3	29
24	Experimental and kinetic methods for studying vitamin A dynamics in vivo. Methods in Enzymology, 1990, 190, 304-317.	0.4	28
25	Dietary Retinoic Acid Alters Vitamin A Kinetics in Both the Whole Body and in Specific Organs of Rats with Low Vitamin A Status. Journal of Nutrition, 2005, 135, 746-752.	1.3	28
26	Mathematical Modeling of Serum 13C-Retinol in Captive Rhesus Monkeys Provides New Insights on Hypervitaminosis A , ,. Journal of Nutrition, 2009, 139, 2000-2006.	1.3	27
27	Influence of dietary fat saturation on lipid absorption in the rat. Atherosclerosis, 1980, 37, 301-310.	0.4	24
28	A Population-Based (Super-Child) Approach for Predicting Vitamin A Total Body Stores and Retinol Kinetics in Children is Validated by the Application of Model-Based Compartmental Analysis to Theoretical Data. Current Developments in Nutrition, 2018, 2, nzy071.	0.1	24
29	Prediction of Liver Vitamin A in Rats by an Oral Isotope Dilution Technique. Journal of Nutrition, 1994, 124, 1265-1270.	1.3	23
30	Quantitative and Conceptual Contributions of Mathematical Modeling to Current Views on Vitamin a Metabolism, Biochemistry, and Nutrition. Advances in Food and Nutrition Research, 1996, 40, 3-24.	1.5	21
31	Evaluation of the "Olson Equation", an Isotope Dilution Method for Estimating Vitamin A Stores. International Journal for Vitamin and Nutrition Research, 2014, 84, 9-15.	0.6	21
32	Liver Vitamin A Levels in Rats Are Predicted by a Modified Isotope Dilution Technique ,. Journal of Nutrition, 1993, 123, 933-939.	1.3	20
33	Vitamin A Kinetics in Neonatal Rats vs. Adult Rats: Comparisons from Model-Based Compartmental Analysis,. Journal of Nutrition, 2015, 145, 403-410.	1.3	20
34	Development of a Compartmental Model Describing the Dynamics of Vitamin A Metabolism in Men. Advances in Experimental Medicine and Biology, 1998, 445, 207-223.	0.8	20
35	Secretion of Vitamin A and Retinol-Binding Protein into Plasma Is Depressed in Rats by N-(4-Hydroxyphenyl)retinamide (Fenretinide) ,. Journal of Nutrition, 1992, 122, 1999-2009.	1.3	18
36	Retinol Isotope Dilution Is Applied during Restriction of Vitamin A Intake to Predict Individual Subject Total Body Vitamin A Stores at Isotopic Equilibrium. Journal of Nutrition, 2016, 146, 2407-2411.	1.3	18

MICHAEL H GREEN

#	Article	IF	CITATIONS
37	Research Communication: Increased Rat Mammary Tissue Vitamin A Associated with Increased Vitamin A Intake during Lactation Is Maintained after Lactation. Journal of Nutrition, 2001, 131, 1544-1547.	1.3	18
38	Effects of N-(4-Hydroxyphenyl)retinamide on Vitamin A Metabolism in Rats. Experimental Biology and Medicine, 1995, 208, 178-185.	1.1	17
39	Dietary Vitamin A Has Both Chronic and Acute Effects on Vitamin A Indices in Lactating Rats and Their Offspring ,. Journal of Nutrition, 2006, 136, 128-132.	1.3	17
40	Addition of Vitamin A Intake Data during Compartmental Modeling of Retinol Kinetics in Theoretical Humans Leads to Accurate Prediction of Vitamin A Total Body Stores and Kinetic Parameters in Studies of Reasonable Duration. Journal of Nutrition, 2019, 149, 2065-2072.	1.3	17
41	The "Super-Child―Approach Is Applied To Estimate Retinol Kinetics and Vitamin A Total Body Stores in Mexican Preschoolers. Journal of Nutrition, 2020, 150, 1644-1651.	1.3	17
42	Use of Model-Based Compartmental Analysis and Theoretical Data to Further Explore Choice of Sampling Time for Assessing Vitamin A Status in Groups and Individual Human Subjects by the Retinol Isotope Dilution Method. Journal of Nutrition, 2021, 151, 2068-2074.	1.3	16
43	Introduction to Modeling ,. Journal of Nutrition, 1992, 122, 690-694.	1.3	15
44	Should We Restrict Vitamin A Intake, a Minor Contributor to Plasma Retinol Turnover, When Using Retinol Isotope Dilution Equations to Estimate an Individual's Vitamin A Status, or Should Vitamin A Balance Be Maintained?. Journal of Nutrition, 2017, 147, 1483-1486.	1.3	14
45	Inclusion of Vitamin A Intake Data Provides Improved Compartmental Model-Derived Estimates of Vitamin A Total Body Stores and Disposal Rate in Older Adults. Journal of Nutrition, 2019, 149, 1282-1287.	1.3	14
46	Better Predictions of Vitamin A Total Body Stores by the Retinol Isotope Dilution Method Are Possible with Deeper Understanding of the Mathematics and by Applying Compartmental Modeling. Journal of Nutrition, 2020, 150, 989-993.	1.3	14
47	A Simple Plasma Retinol Isotope Ratio Method for Estimating Î ² -Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis. Journal of Nutrition, 2017, 147, 1806-1814.	1.3	12
48	Are Fatty Acids Gluconeogenic Precursors?. Journal of Nutrition, 2020, 150, 2235-2238.	1.3	12
49	Development of a Compartmental Model to Investigate the Influence of Inflammation on Predictions of Vitamin A Total Body Stores by Retinol Isotope Dilution in Theoretical Humans. Journal of Nutrition, 2021, 151, 731-741.	1.3	10
50	Intestinal β-carotene bioconversion in humans is determined by a new single-sample, plasma isotope ratio method and compared with traditional and modified area-under-the-curve methods. Archives of Biochemistry and Biophysics, 2018, 653, 121-126.	1.4	9
51	Influence of Vitamin A Status on the Choice of Sampling Time for Application of the Retinol Isotope Dilution Method in Theoretical Children. Journal of Nutrition, 2021, 151, 3874-3881.	1.3	9
52	Vitamin A Absorption Efficiency Determined by Compartmental Analysis of Postprandial Plasma Retinyl Ester Kinetics in Theoretical Humans. Journal of Nutrition, 2020, 150, 2223-2229.	1.3	8
53	The Use of Model-Based Compartmental Analysis to Study Vitamin A Metabolism in a Non-Steady State. Advances in Experimental Medicine and Biology, 2003, 537, 159-172.	0.8	8
54	A Compartmental Model Describing the Kinetics of β-Carotene and β-Carotene-Derived Retinol in Healthy Older Adults. Journal of Nutrition, 2021, 151, 434-444.	1.3	7

MICHAEL H GREEN

#	Article	IF	CITATIONS
55	Does the Amount of Stable Isotope Dose Influence Retinol Kinetic Responses and Predictions of Vitamin A Total Body Stores by the Retinol Isotope Dilution Method in Theoretical Children and Adults?. Journal of Nutrition, 2022, 152, 86-93.	1.3	6
56	Use of Compartmental Modeling and Datasets for Theoretical Lactating Women to Determine Conditions under Which Vitamin A–Specific Activity in Breast Milk Provides Accurate Estimates of Vitamin A Total Body Stores by Retinol Isotope Dilution. Journal of Nutrition, 2022, 152, 1629-1634.	1.3	5
57	Parameter identifiability and Extended Multiple Studies Analysis of a compartmental model for human vitamin A kinetics: fixing fractional transfer coefficients for the initial steps in the absorptive process. British Journal of Nutrition, 2014, 111, 1004-1010.	1.2	4
58	Development of a Compartmental Model for Studying Vitamin A Kinetics and Status in Theoretical Lactating Women. Journal of Nutrition, 2022, , .	1.3	4
59	The Use of Datasets for Theoretical Subjects to Validate Vitamin A–Related Methods and Experimental Designs. Journal of Nutrition, 2022, 152, 707-713.	1.3	3
60	Vitamin A Absorption Determined in Rats Using a Plasma Isotope Ratio Method. Journal of Nutrition, 2020, 150, 1977-1981.	1.3	2
61	Pregnancy and Lactation Alter Vitamin A Metabolism and Kinetics in Rats under Vitamin A-Adequate Dietary Conditions. Nutrients, 2021, 13, 2853.	1.7	2
62	Compartmental Modeling of Vitamin A Stable Isotope Data from Milk or Plasma Provides Comparable Predictions of Vitamin A Stores in Theoretical Lactating Women. Journal of Nutrition, 2022, 152, 2950-2955.	1.3	2
63	Letter to the Editor. Journal of Nutrition, 2021, 151, 1357-1358.	1.3	0