
## Stéphane Le Calvé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6304995/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Development of a Portable and Modular Gas Generator: Application to Formaldehyde Analysis.<br>Chemosensors, 2022, 10, 131.                                                                    | 1.8 | 2         |
| 2  | Continuous aldehydes monitoring in primary schools in France: Evaluation of emission sources and ventilation practices over 5 weeks. Atmospheric Pollution Research, 2021, 12, 340-351.       | 1.8 | 9         |
| 3  | Simultaneous Monitoring of Particle-Bound PAHs Inside a Low-Energy School Building and Outdoors over Two Weeks in France. Atmosphere, 2021, 12, 108.                                          | 1.0 | 8         |
| 4  | An Assessment of Indoor Air Quality in the Arrivals Hall of Beirut–Rafic Hariri International Airport:<br>Monitoring of VOCs and NO2. Atmosphere, 2021, 12, 400.                              | 1.0 | 5         |
| 5  | A Sensitive and Portable Deep-UV Absorbance Detector with a Microliter Gas Cell Compatible with Micro GC. Chemosensors, 2021, 9, 63.                                                          | 1.8 | 4         |
| 6  | Numerical simulation of the sorption phenomena during the transport of VOCs inside a capillary GC column. Chemical Engineering Science, 2021, 234, 116445.                                    | 1.9 | 0         |
| 7  | Experimental Validation of a Novel Generator of Gas Mixtures Based on Axial Gas Pulses Coupled to a<br>Micromixer. Micromachines, 2021, 12, 715.                                              | 1.4 | 2         |
| 8  | Recent developments and trends in miniaturized gas preconcentrators for portable gas<br>chromatography systems: A review. Sensors and Actuators B: Chemical, 2021, 346, 130449.               | 4.0 | 16        |
| 9  | A review of optical interferometry techniques for VOC detection. Sensors and Actuators A: Physical, 2020, 302, 111782.                                                                        | 2.0 | 53        |
| 10 | Adsorbent screening for airborne BTEX analysis and removal. Journal of Environmental Chemical Engineering, 2020, 8, 103563.                                                                   | 3.3 | 3         |
| 11 | Characterization of a modular microfluidic photoionization detector. Sensors and Actuators B:<br>Chemical, 2020, 324, 128667.                                                                 | 4.0 | 11        |
| 12 | Miniaturization of fluorescence sensing in optofluidic devices. Microfluidics and Nanofluidics, 2020, 24, 1.                                                                                  | 1.0 | 31        |
| 13 | Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. Micromachines, 2020, 11, 673.                                                                                                  | 1.4 | 6         |
| 14 | Low-volume PEEK gas cell for BTEX detection using portable deep-UV absorption spectrophotometry.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118727. | 2.0 | 10        |
| 15 | On-Line Gaseous Formaldehyde Detection Based on a Closed-Microfluidic-Circuit Analysis.<br>Chemosensors, 2020, 8, 57.                                                                         | 1.8 | 6         |
| 16 | Easy-to-manufacture micro gas preconcentrator integrated in a portable GC for enhanced trace detection of BTEX. Sensors and Actuators B: Chemical, 2020, 324, 128690.                         | 4.0 | 12        |
| 17 | Adsorptive removal of gaseous formaldehyde at realistic concentrations. Journal of Environmental<br>Chemical Engineering, 2020, 8, 103986.                                                    | 3.3 | 24        |
| 18 | Volatile organic compounds (VOCs) removal capacity of ZSM-5 zeolite adsorbents for near real-time<br>BTEX detection. Journal of Environmental Chemical Engineering, 2020, 8, 103724.          | 3.3 | 19        |

STéPHANE LE CALVé

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Prototyping a Microfluidic Sensor for Real-Time Detection of Airborne Formaldehyde. International<br>Journal of Chemical Engineering and Applications (IJCEA), 2020, 11, 23-28.                   | 0.3 | 5         |
| 20 | Micro Milled Microfluidic Photoionization Detector for Volatile Organic Compounds.<br>Micromachines, 2019, 10, 228.                                                                               | 1.4 | 15        |
| 21 | Design of a Novel Axial Gas Pulses Micromixer and Simulations of its Mixing Abilities via<br>Computational Fluid Dynamics. Micromachines, 2019, 10, 205.                                          | 1.4 | 6         |
| 22 | Development of a Toluene Detector Based on Deep UV Absorption Spectrophotometry Using Glass and Aluminum Capillary Tube Gas Cells with a LED Source. Micromachines, 2019, 10, 193.                | 1.4 | 16        |
| 23 | Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines, 2019, 10, 187.                                                 | 1.4 | 20        |
| 24 | Micro photoionization detectors. Sensors and Actuators B: Chemical, 2019, 287, 86-94.                                                                                                             | 4.0 | 36        |
| 25 | Near Real-Time Monitoring of Formaldehyde in a Low-Energy School Building. Atmosphere, 2019, 10, 763.                                                                                             | 1.0 | 9         |
| 26 | Gas Detection Using Portable Deep-UV Absorption Spectrophotometry: A Review. Sensors, 2019, 19, 5210.                                                                                             | 2.1 | 43        |
| 27 | Development and Optimization of an Airborne Formaldehyde Microfluidic Analytical Device Based on<br>Passive Uptake through a Microporous Tube. Micromachines, 2019, 10, 807.                      | 1.4 | 8         |
| 28 | An assessment of indoor air quality in the maintenance room at Beirut-Rafic Hariri International<br>Airport. Atmospheric Pollution Research, 2019, 10, 701-711.                                   | 1.8 | 14        |
| 29 | VOC tracers from aircraft activities at Beirut Rafic Hariri International Airport. Atmospheric Pollution Research, 2019, 10, 537-551.                                                             | 1.8 | 9         |
| 30 | Optofluidic fluorescence cell for the detection of low concentration toxic gases. Sensors and Actuators B: Chemical, 2018, 255, 3441-3446.                                                        | 4.0 | 6         |
| 31 | Identifying the impact of Beirut Airport's activities on local air quality - Part I: Emissions inventory of NO2 and VOCs. Atmospheric Environment, 2018, 187, 435-444.                            | 1.9 | 21        |
| 32 | BTEX near real-time monitoring in two primary schools in La Rochelle, France. Air Quality, Atmosphere and Health, 2018, 11, 1091-1107.                                                            | 1.5 | 12        |
| 33 | On-line gaseous formaldehyde detection by a microfluidic analytical method based on simultaneous uptake and derivatization in a temperature controlled annular flow. Talanta, 2017, 172, 102-108. | 2.9 | 20        |
| 34 | Development of microfluidic analytical method for on-line gaseous Formaldehyde detection. Sensors and Actuators B: Chemical, 2017, 243, 963-970.                                                  | 4.0 | 22        |
| 35 | Data on comparison between FLEC and CLIMPAQ methods used for fast sorption measurements of VOCs on building materials. Data in Brief, 2016, 7, 518-523.                                           | 0.5 | 4         |
|    |                                                                                                                                                                                                   |     |           |

An IoT-based scheme for real time indoor personal exposure assessment. , 2016, , .

8

STéPHANE LE CALVé

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fast sorption measurements of volatile organic compounds on building materials: Part 1 –<br>Methodology developed for field applications. Data in Brief, 2016, 6, 953-958.                                                              | 0.5 | 3         |
| 38 | Fast sorption measurements of VOCs on building materials: Part 2 – Comparison between FLEC and CLIMPAQ methods. Building and Environment, 2016, 99, 239-251.                                                                            | 3.0 | 10        |
| 39 | Development of a novel portable miniaturized GC for near real-time low level detection of BTEX.<br>Sensors and Actuators B: Chemical, 2016, 224, 159-169.                                                                               | 4.0 | 38        |
| 40 | Portable novel micro-device for BTEX real-time monitoring: Assessment during a field campaign in a<br>low consumption energy junior high school classroom. Atmospheric Environment, 2016, 126, 211-217.                                 | 1.9 | 20        |
| 41 | Fast sorption measurements of volatile organic compounds on building materials: Part 1 $\hat{a} \in$ "Methodology developed for field applications. Building and Environment, 2016, 99, 200-209.                                        | 3.0 | 12        |
| 42 | Fluorescence Microscopy Analysis of Particulate Matter from Biomass Burning: Polyaromatic<br>Hydrocarbons as Main Contributors. Aerosol Science and Technology, 2015, 49, 1160-1169.                                                    | 1.5 | 11        |
| 43 | Photoinduced Proton Transfer Promoted by Peripheral Subunits for Some Hantzsch Esters. Journal of Physical Chemistry A, 2015, 119, 39-49.                                                                                               | 1.1 | 9         |
| 44 | An analytical method coupling accelerated solvent extraction and HPLC-fluorescence for the<br>quantification of particle-bound PAHs in indoor air sampled with a 3-stages cascade impactor. Talanta,<br>2015, 131, 386-394.             | 2.9 | 36        |
| 45 | In-situ measurements of sorption parameters with a Field and Laboratory Emission Cell (FLEC): a comparison to the test emission chamber method. WIT Transactions on Ecology and the Environment, 2015, , .                              | 0.0 | Ο         |
| 46 | Experimental performances study of a transportable GC-PID and two thermo-desorption based<br>methods coupled to FID and MS detection to assess BTEX exposure at sub-ppb level in air. Talanta, 2014,<br>127, 33-42.                     | 2.9 | 44        |
| 47 | Particle-bound PAHs quantification using a 3-stages cascade impactor in French indoor environments.<br>Environmental Pollution, 2014, 195, 64-72.                                                                                       | 3.7 | 19        |
| 48 | A dynamic system for single and repeated exposure of airway epithelial cells to gaseous pollutants.<br>Toxicology in Vitro, 2013, 27, 632-640.                                                                                          | 1.1 | 19        |
| 49 | Portable, miniature, fast and high sensitive real-time analyzers: BTEX detection. Sensors and Actuators<br>B: Chemical, 2013, 182, 446-452.                                                                                             | 4.0 | 48        |
| 50 | Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection. Sensors and<br>Actuators B: Chemical, 2013, 181, 551-558.                                                                                      | 4.0 | 104       |
| 51 | Specific accumulation of CYP94A1 transcripts after exposure to gaseous benzaldehyde: Induction of<br>lauric acid ω-hydroxylase activity in Vicia sativa exposed to atmospheric pollutants. Environmental<br>Research, 2011, 111, 37-44. | 3.7 | 3         |
| 52 | Henry's law constant measurements for formaldehyde and benzaldehyde as a function of temperature<br>and water composition. Atmospheric Environment, 2011, 45, 2991-2998.                                                                | 1.9 | 49        |
| 53 | Studies on atmospheric degradation of diazinon in the EUPHORE simulation chamber. Chemosphere, 2011, 85, 724-730.                                                                                                                       | 4.2 | 24        |
| 54 | Vapor Pressure Measurements of Hydroxyacetaldehyde and Hydroxyacetone in the Temperature Range<br>(273 to 356) K. Journal of Chemical & Engineering Data, 2010, 55, 852-855.                                                            | 1.0 | 24        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | In-cloud multiphase behaviour of acetone in the troposphere: Cas uptake, Henry's law equilibrium and aqueous phase photooxidation. Chemosphere, 2010, 81, 312-320.                                                               | 4.2 | 25        |
| 56 | Adsorption of Hydroxyacetone on Pure Ice Surfaces. ChemPhysChem, 2010, 11, 3921-3927.                                                                                                                                            | 1.0 | 11        |
| 57 | Adsorption of Benzaldehyde at the Surface of Ice, Studied by Experimental Method and Computer<br>Simulation. Langmuir, 2010, 26, 9596-9606.                                                                                      | 1.6 | 29        |
| 58 | Uptake Measurements of Acetaldehyde on Solid Ice Surfaces and on Solid/Liquid Supercooled Mixtures<br>Doped with HNO <sub>3</sub> in the Temperature Range 203â^253 K. Journal of Physical Chemistry A,<br>2009, 113, 5091-5098. | 1.1 | 26        |
| 59 | Near-UV molar absorptivities of alachlor, mecroprop-p, pendimethalin, propanil and trifluralin in methanol. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 237-244.                                         | 2.0 | 8         |
| 60 | Concentrations and determinants of gaseous aldehydes in 162 homes in Strasbourg (France).<br>Atmospheric Environment, 2008, 42, 505-516.                                                                                         | 1.9 | 66        |
| 61 | UV absorption spectrum and Henry's law constant of EPTC. Atmospheric Environment, 2008, 42, 7940-7946.                                                                                                                           | 1.9 | 5         |
| 62 | Le formaldéhyde inhalé et la réponse bronchique. Revue Francaise D'allergologie Et D'immunologie<br>Clinique, 2007, 47, 80-83.                                                                                                   | 0.1 | 0         |
| 63 | Uptake Measurements of Ethanol on Ice Surfaces and on Supercooled Aqueous Solutions Doped with Nitric Acid between 213 and 243 K. Journal of Physical Chemistry A, 2007, 111, 925-931.                                           | 1.1 | 28        |
| 64 | Tropospheric multiphase chemistry of 2,5- and 2,6-dimethylphenols: determination of the mass<br>accommodation coefficients and the Henry's law constants. Physical Chemistry Chemical Physics,<br>2006, 8, 1714.                 | 1.3 | 4         |
| 65 | Le formaldéhyde inhalé et la réponse bronchique. Revue Des Maladies Respiratoires, 2006, 23, 3S25-3S34.                                                                                                                          | 1.7 | 11        |
| 66 | Atmospheric Fate of Dichlorvos:Â Photolysis and OH-Initiated Oxidation Studies. Environmental<br>Science & Technology, 2006, 40, 850-857.                                                                                        | 4.6 | 43        |
| 67 | Inhaled formaldehyde exposure: effect on bronchial response to mite allergen in sensitized asthma patients. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 1344-1350.                                   | 2.7 | 101       |
| 68 | Molar absorptivities of 2,4-D, cymoxanil, fenpropidin, isoproturon and pyrimethanil in aqueous<br>solution in the near-UV. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy,<br>2006, 63, 103-110.          | 2.0 | 11        |
| 69 | Aldehyde measurements in indoor environments in Strasbourg (France). Atmospheric Environment, 2006, 40, 1336-1345.                                                                                                               | 1.9 | 111       |
| 70 | Formaldehyde measurements in libraries: Comparison between infrared diode laser spectroscopy and a<br>DNPH-derivatization method. Atmospheric Environment, 2006, 40, 5768-5775.                                                  | 1.9 | 53        |
| 71 | Near-UV molar absorptivities of acetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 76-81.                                          | 2.0 | 74        |
| 72 | The influence of reaction conditions on the photooxidation of diisopropyl ether. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 86-97.                                                                      | 2.0 | 14        |

STéPHANE LE CALVé

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Human Exposure Chamber for Known Formaldehyde Levels: Generation and Validation. Indoor and<br>Built Environment, 2005, 14, 173-182.                                                                                         | 1.5 | 17        |
| 74 | Adsorption of acetic acid on ice: Experiments and molecular dynamics simulations. Journal of Chemical Physics, 2005, 122, 194707.                                                                                            | 1.2 | 46        |
| 75 | Adsorption Study of Acetone on Acid-Doped Ice Surfaces between 203 and 233 K. Journal of Physical Chemistry B, 2005, 109, 14112-14117.                                                                                       | 1.2 | 18        |
| 76 | Henry's law constants measurements of the nonylphenol isomer 4(3′,5′-dimethyl-3′-heptyl)-phenol,<br>tertiary octylphenol and γ-hexachlorocyclohexane between 278 and 298 K. Atmospheric Environment,<br>2004, 38, 4859-4868. | 1.9 | 19        |
| 77 | Henry's law constant measurements for phenol, o-, m-, and p-cresol as a function of temperature.<br>Atmospheric Environment, 2004, 38, 5577-5588.                                                                            | 1.9 | 43        |
| 78 | Adsorption studies of acetone and 2,3-butanedione on ice surfaces between 193 and 223 K. Physical<br>Chemistry Chemical Physics, 2004, 6, 1277-1284.                                                                         | 1.3 | 35        |
| 79 | Photolysis of Chloral under Atmospheric Conditions. Environmental Science & Technology, 2004, 38, 831-837.                                                                                                                   | 4.6 | 26        |
| 80 | Experimental and Theoretical Adsorption Study of Ethanol on Ice Surfaces. Journal of Physical Chemistry B, 2004, 108, 17425-17432.                                                                                           | 1.2 | 37        |
| 81 | Temperature dependence of Henry's law constants of metolachlor and diazinon. Chemosphere, 2004, 57, 319-327.                                                                                                                 | 4.2 | 37        |
| 82 | Uptake study of ClONO <sub>2</sub> and<br>BrONO <sub>2</sub> by Halide containing droplets. Atmospheric Chemistry<br>and Physics, 2004, 4, 1291-1299.                                                                        | 1.9 | 51        |
| 83 | Henry's law constants measurements of alachlor and dichlorvos between 283 and 298K. Atmospheric Environment, 2003, 37, 2347-2353.                                                                                            | 1.9 | 19        |
| 84 | Uptake Measurements of Dibasic Esters by Water Droplets and Determination of Their Henry's Law<br>Constants. Journal of Physical Chemistry A, 2003, 107, 11433-11439.                                                        | 1.1 | 12        |
| 85 | Experimental Uptake Study of Ethanol by Water Droplets and Its Theoretical Modeling of Cluster<br>Formation at the Interface. Journal of Physical Chemistry B, 2002, 106, 7237-7245.                                         | 1.2 | 21        |
| 86 | Kinetic studies of OH reactions with propylal, butylal and 1,3-dioxolane. Physical Chemistry Chemical Physics, 2002, 4, 5622-5626.                                                                                           | 1.3 | 12        |
| 87 | Atmospheric Loss Processes of Dimethyl and Diethyl Carbonate. Journal of Atmospheric Chemistry, 2002, 43, 151-174.                                                                                                           | 1.4 | 18        |
| 88 | Kinetic Studies of OH and O3 Reactions with Allyl and Isopropenyl Acetate. Journal of Atmospheric<br>Chemistry, 2000, 37, 161-172.                                                                                           | 1.4 | 26        |
| 89 | Kinetic Studies of OH Reactions with a Series of Ketones. Journal of Physical Chemistry A, 1998, 102, 4579-4584.                                                                                                             | 1.1 | 78        |
| 90 | Kinetic Studies of OH Reactions with a Series of Methyl Esters. Journal of Physical Chemistry A, 1997, 101, 9137-9141.                                                                                                       | 1.1 | 42        |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Temperature Dependence for the Rate Coefficients of the Reactions of the OH Radical with a Series of Formates. Journal of Physical Chemistry A, 1997, 101, 5489-5493. | 1.1 | 71        |
| 92 | Kinetic Studies of OH Reactions with a Series of Acetates. The Journal of Physical Chemistry, 1996, 100, 12364-12368.                                                 | 2.9 | 61        |