$Mar\tilde{A}\text{-}a\text{-}Jes\tilde{A}^{o}s\,\tilde{A}\overset{\bullet}{\textbf{s}}iz$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6304813/publications.pdf Version: 2024-02-01

		66343	110387
119	5,138	42	64
papers	citations	h-index	g-index
122	122	122	3546
all docs	docs citations	times ranked	citing authors

ΜΑρδα-Ιεςδος δέρις

#	Article	IF	CITATIONS
1	Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature, 1999, 401, 785-788.	27.8	249
2	Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique, 2003, 62, 279-299.	2.2	198
3	Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons. PLoS ONE, 2015, 10, e0139633.	2.5	163
4	Sponge Mass Mortalities in a Warming Mediterranean Sea: Are Cyanobacteria-Harboring Species Worse Off?. PLoS ONE, 2011, 6, e20211.	2.5	158
5	Mineral skeletogenesis in sponges. Canadian Journal of Zoology, 2006, 84, 322-356.	1.0	125
6	Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia, 2003, 135, 91-101.	2.0	116
7	Growth dynamics and mortality of the encrusting spongeCrambe crambe(Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology, 1998, 12, 631-639.	3.6	106
8	Distribution of brominated compounds within the sponge Aplysina aerophoba : coupling of X-ray microanalysis with cryofixation techniques. Cell and Tissue Research, 2000, 301, 311-322.	2.9	103
9	Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ, 2016, 4, e2807.	2.0	103
10	Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. , 1997, 278, 22-36.		100
11	How do reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges?. Marine Ecology - Progress Series, 1998, 167, 137-148.	1.9	99
12	Sexual propagation by sponge fragments. Nature, 1999, 398, 476-476.	27.8	95
13	Silica deposition in Demosponges: spiculogenesis in Crambe crambe. Cell and Tissue Research, 2000, 301, 299-309.	2.9	95
14	Antimicrobial activity and surface bacterial film in marine sponges. Journal of Experimental Marine Biology and Ecology, 1994, 179, 195-205.	1.5	93
15	Seasonal Patterns of Toxicity in Benthic Invertebrates: The Encrusting Sponge Crambe crambe (Poecilosclerida). Oikos, 1996, 75, 33.	2.7	86
16	Showcasing the role of seawater in bacteria recruitment and microbiome stability in sponges. Scientific Reports, 2018, 8, 15201.	3.3	82
17	Multiple Functions for Secondary Metabolites in Encrusting Marine Invertebrates. Journal of Chemical Ecology, 1997, 23, 1527-1547.	1.8	76
18	Similar spongeâ€associated bacteria can be acquired via both vertical and horizontal transmission. Environmental Microbiology, 2015, 17, 3807-3821.	3.8	76

#	Article	IF	CITATIONS
19	Feeding deterrence in sponges. The role of toxicity, physical defenses, energetic contents, and life-history stage Journal of Experimental Marine Biology and Ecology, 1996, 205, 187-204.	1.5	72
20	New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell and Tissue Research, 1996, 285, 519-527.	2.9	71
21	Dispersal strategies in sponge larvae: integrating the life history of larvae and the hydrologic component. Oecologia, 2006, 149, 174-184.	2.0	68
22	Larval bloom of the oviparous sponge Cliona viridis : coupling of larval abundance and adult distribution. Marine Biology, 2000, 137, 783-790.	1.5	67
23	Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Scientific Reports, 2019, 9, 5911.	3.3	66
24	Sponges as biomonitors of heavy metals in spatial and temporal surveys in northwestern Mediterranean: Multispecies comparison. Environmental Toxicology and Chemistry, 2007, 26, 2430-2439.	4.3	65
25	Microrefuge exploitation by subtidal encrusting sponges:patterns of settlement and post-settlement survival. Marine Ecology - Progress Series, 1998, 174, 141-150.	1.9	65
26	Response of the Mediterranean sponge Chondrosia reniformis Nardo to copper pollution. Environmental Pollution, 2006, 141, 452-458.	7.5	63
27	Population genetics at three spatial scales of a rare sponge living in fragmented habitats. BMC Evolutionary Biology, 2010, 10, 13.	3.2	62
28	Benthic assemblages in two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 557-572.	0.8	61
29	Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Marine Ecology - Progress Series, 2009, 380, 95-102.	1.9	61
30	Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Organisms Diversity and Evolution, 2002, 2, 55-86.	1.6	56
31	Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: A phylogenetic approach. Molecular Phylogenetics and Evolution, 2007, 45, 392-397.	2.7	56
32	Patterns of resource allocation to somatic, defensive, and reproductive functions in the Mediterranean encrusting sponge Crambe crambe (Demospongiae, Poecilosclerida). Marine Ecology - Progress Series, 1995, 124, 159-170.	1.9	56
33	The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. Journal of Plankton Research, 2005, 27, 249-262.	1.8	55
34	Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates. Journal of Experimental Marine Biology and Ecology, 1993, 173, 11-27.	1.5	50
35	Biotic Affinities in a Transitional Zone Between the Atlantic and the Mediterranean: A Biogeographical Approach Based on Sponges. Journal of Biogeography, 1995, 22, 89.	3.0	50
36	Sponges and Their Microbiomes Show Similar Community Metrics Across Impacted and Well-Preserved Reefs. Frontiers in Microbiology, 2019, 10, 1961.	3.5	49

#	Article	IF	CITATIONS
37	Natural variation of toxicity in encrusting spongeCrambe crambe (Schmidt) in relation to size and environment. Journal of Chemical Ecology, 1995, 21, 1931-1946.	1.8	48
38	Title is missing!. Hydrobiologia, 1997, 355, 77-89.	2.0	48
39	Removing environmental sources of variation to gain insight on symbionts vs. transient microbes in high and low microbial abundance sponges. Environmental Microbiology, 2013, 15, 3008-3019.	3.8	47
40	Snapshot of a Bacterial Microbiome Shift during the Early Symptoms of a Massive Sponge Die-Off in the Western Mediterranean. Frontiers in Microbiology, 2016, 7, 752.	3.5	46
41	ENDOSYMBIOTIC CALCIFYING BACTERIA: A NEW CUE TO THE ORIGIN OF CALCIFICATION IN METAZOA?. Evolution; International Journal of Organic Evolution, 2012, 66, 2993-2999.	2.3	45
42	Small-scale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia, 1996, 108, 351-360.	2.0	44
43	Long-term culture of sponge explants: conditions enhancing survival and growth, and assessment of bioactivity. New Biotechnology, 2003, 20, 339-347.	2.7	44
44	Mass recruitment of Ophiothrix fragilis (Ophiuroidea) on sponges:settlement patterns and post-settlement dynamics. Marine Ecology - Progress Series, 2000, 200, 201-212.	1.9	44
45	Sponge Communities in Three Submarine Caves of the Balearic Islands (Western Mediterranean): Adaptations and Faunistic Composition. Marine Ecology, 1989, 10, 317-334.	1.1	43
46	Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom, 1999, 79, 409-413.	0.8	41
47	Contrasting biological traits of Clavelina lepadiformis (Ascidiacea) populations from inside and outside harbours in the western Mediterranean. Marine Ecology - Progress Series, 2002, 244, 125-137.	1.9	41
48	Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biological Journal of the Linnean Society, 2003, 78, 429-438.	1.6	38
49	Ultrastructure and dispersal potential of sponge larvae: tufted <i>versus</i> evenly ciliated parenchymellae. Marine Ecology, 2008, 29, 280-297.	1.1	37
50	Grazing, differential size-class dynamics and survival of the Mediterranean sponge Corticium candelabrum. Marine Ecology - Progress Series, 2008, 360, 97-106.	1.9	36
51	In Situ Aquaculture Methods for Dysidea avara (Demospongiae, Porifera) in the Northwestern Mediterranean. Marine Drugs, 2010, 8, 1731-1742.	4.6	35
52	Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel,) Tj ETQq0 0 0	rgBT /Over 1.4	lock <u>3</u> 10 Tf 50
53	New Insights Into the Archaeal Consortium of Tropical Sponges. Frontiers in Marine Science, 2020, 6, .	2.5	35

54Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge
Paraleucilla magna to the western Mediterranean. Hydrobiologia, 2012, 687, 71-84.2.034

#	Article	IF	CITATIONS
55	Morphology and ultrastructure of the swimming larvae of <i>Crambe crambe</i> (Demospongiae,) Tj ETQq1 1	0.784314	rgBT_{Overloci
56	Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in <i>Corticium candelabrum</i> (Porifera: Demospongiae). Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 1693-1699.	0.8	33
57	Cliona Viridis(Schmidt, 1862) andCliona Nigricans(Schmidt, 1862) (Porifera, Hadromerida): evidence which shows they are the same species. Ophelia, 1991, 33, 45-53.	0.3	32
58	Cell culture from sponges: pluripotency and immortality. Trends in Biotechnology, 2007, 25, 467-471.	9.3	32
59	'A posteriori' searching for phenotypic characters to describe new cryptic species of sponges revealed by molecular markers (Dictyonellidae : Scopalina). Invertebrate Systematics, 2008, 22, 489.	1.3	32
60	Sources of Secondary Metabolite Variation in Dysidea avara (Porifera: Demospongiae): The Importance of Having Good Neighbors. Marine Drugs, 2013, 11, 489-503.	4.6	32
61	Cultivation of Sponge Larvae: Settlement, Survival, and Growth of Juveniles. Marine Biotechnology, 2007, 9, 592-605.	2.4	31
62	Harmothöe Hyalonemae SF. NOV. (Polychaeta, Polynoidae), An Exclusive Inhabitant of Different Atlanto-Mediterranean Species of Hyalonema (Porifera, Hexactinellida). Ophelia, 1992, 35, 169-185.	0.3	30
63	Molecular and organism biomarkers of copper pollution in the ascidian Pseudodistoma crucigaster. Marine Pollution Bulletin, 2004, 48, 759-767.	5.0	30
64	Contrasting effects of heavy metals and hydrocarbons on larval settlement and juvenile survival in sponges. Aquatic Toxicology, 2007, 81, 137-143.	4.0	30
65	Observations of asexual reproductive strategies in Antarctic hexactinellid sponges from ROV video records. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 972-984.	1.4	29
66	Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: correlation to biotic and abiotic factors. Marine Ecology - Progress Series, 2004, 282, 73-85.	1.9	28
67	Chemically-mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera, Poecilosclerida). , 1997, , 77-89.		28
68	Grazing on fleshy seaweeds by sea urchins facilitates sponge Cliona viridis growth. Marine Ecology - Progress Series, 2006, 323, 83-89.	1.9	28
69	High genetic diversity, phenotypic plasticity, and invasive potential of a recently introduced calcareous sponge, fast spreading across the Atlanto-Mediterranean basin. Marine Biology, 2016, 163, 123.	1.5	27
70	Quantitative assessment of natural toxicity in sponges: toxicity bioassay versus compound quantification. Journal of Chemical Ecology, 2003, 29, 1307-1318.	1.8	26
71	Phylogenetic Relationships within the Excavating Hadromerida (Porifera), with a Systematic Revision. Cladistics, 1997, 13, 349-366.	3.3	25
72	An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge. Marine Ecology - Progress Series, 1999, 185, 239-255.	1.9	25

#	Article	IF	CITATIONS
73	Microstructure variation in sponges sharing growth form: The encrusting demospongesDysidea avaraandCrambe crambe. Acta Zoologica, 2000, 81, 93-107.	0.8	24
74	Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebrate Biology, 2011, 130, 1-10.	0.9	24
75	"Living Together Apart†The Hidden Genetic Diversity of Sponge Populations. Molecular Biology and Evolution, 2011, 28, 2435-2438.	8.9	24
76	Sponge Ecology in the Molecular Era. Advances in Marine Biology, 2012, 61, 345-410.	1.4	24
77	Hidden diversity in sympatric sponges: adjusting life-history dynamics to share substrate. Marine Ecology - Progress Series, 2008, 371, 109-115.	1.9	24
78	A new <i>Discorhabdella</i> (Porifera, Demospongiae), a new Tethyan relict of pre-Messinian biota?. Journal of Natural History, 1992, 26, 1-7.	0.5	23
79	Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave. Scientia Marina, 2009, 73, 387-397.	0.6	23
80	Sponges from bathyal depths (1000–1750 m) in the Western Mediterranean Sea. Journal of Natural History, 1990, 24, 373-391.	0.5	22
81	Measuring toxicity in marine environments: critical appraisal of three commonly used methods. Experientia, 1995, 51, 414-418.	1.2	21
82	Isomeric Furanosesquiterpenes from the Portuguese Marine Sponge Fasciospongia sp Journal of Natural Products, 2008, 71, 2049-2052.	3.0	21
83	Antifungal and antibacterial activity of Porifera extracts from the Moroccan Atlantic coasts. Journal De Mycologie Medicale, 2010, 20, 70-74.	1.5	21
84	Embryo development of Corticium candelabrum (Demospongiae: Homosclerophorida). Invertebrate Biology, 2007, 126, 211-219.	0.9	20
85	Environmental Flow Regimes for Dysidea avara Sponges. Marine Biotechnology, 2008, 10, 622-630.	2.4	19
86	Reproductive traits explain contrasting ecological features in sponges: the sympatric poecilosclerids Hemimycale columella and Crella elegans as examples. Hydrobiologia, 2012, 687, 315-330.	2.0	18
87	Endosymbiotic calcifying bacteria across sponge species and oceans. Scientific Reports, 2017, 7, 43674.	3.3	18
88	Phylogenetic Reassessment of Antarctic Tetillidae (Demospongiae, Tetractinellida) Reveals New Genera and Genetic Similarity among Morphologically Distinct Species. PLoS ONE, 2016, 11, e0160718.	2.5	18
89	Calcareous spherules produced by intracellular symbiotic bacteria protect the sponge Hemimycale columella from predation better than secondary metabolites. Marine Ecology - Progress Series, 2015, 523, 81-92.	1.9	18
90	Distribution patterns and demographic trends of demosponges at the Menorca Channel (Northwestern Mediterranean Sea). Progress in Oceanography, 2019, 173, 9-25.	3.2	17

#	Article	IF	CITATIONS
91	Contrasting Effects of Heavy Metals on Sponge Cell Behavior. Archives of Environmental Contamination and Toxicology, 2007, 53, 552-558.	4.1	16
92	Copepods of the genus Asterocheres (Copepoda: Siphonostomatoida) feeding on sponges: behavioral and ecological traits. Invertebrate Biology, 2001, 120, 269-277.	0.9	15
93	Polymorphic microsatellite loci isolated from the marine sponge Scopalina lophyropoda (Demospongiae: Halichondrida). Molecular Ecology Notes, 2005, 5, 466-468.	1.7	15
94	Spatial and temporal variation of natural toxicity in cnidarians, bryozoans and tunicates in Mediterranean caves. Scientia Marina, 2005, 69, 485-492.	0.6	15
95	Silica Deposition in Demosponges. Progress in Molecular and Subcellular Biology, 2003, 33, 163-193.	1.6	14
96	Do bipolar distributions exist in marine sponges? Stylocordyla chupachups sp. nv. (Porifera:) Tj ETQq0 0 0 rgBT /0 Biology, 2011, 34, 243-255.	Dverlock 1 1.2	0 Tf 50 547 T 14
97	A NGS approach to the encrusting Mediterranean sponge C rella elegans (Porifera, Demospongiae,) Tj ETQq1 1 0 along three life cycle stages. Molecular Ecology Resources, 2013, 13, 494-509.	.784314 i 4.8	rgBT /Overloc 14
98	Seasonal variation in the structure of three Mediterranean algal communities in various light conditions. Estuarine, Coastal and Shelf Science, 2005, 64, 613-622.	2.1	13
99	Do heavy metals play an active role in sponge cell behaviour in the absence of calcium? Consequences in larval settlement. Journal of Experimental Marine Biology and Ecology, 2007, 346, 60-65.	1.5	13
100	Temporal variation of several structure descriptors in animal-dominated benthic communities in two Mediterranean caves. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 573-580.	0.8	12
101	Molecular phylogenies confirm the presence of two cryptic <i>Hemimycale</i> species in the Mediterranean and reveal the polyphyly of the genera <i>Crella</i> and <i>Hemimycale</i> (Demospongiae: Poecilosclerida). PeerJ, 2017, 5, e2958.	2.0	12
102	Early life histories in the bryozoan Schizobrachiella sanguinea: a case study. Marine Biology, 2005, 147, 735-745.	1.5	11
103	Methodological bias in the estimations of important meroplanktonic components from near-shore bottoms. Marine Ecology - Progress Series, 2003, 253, 67-75.	1.9	11
104	2′-phosphodiesterase and 2′,5′-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera]. Biochimie, 2009, 91, 1531-1534.	2.6	10
105	In vitro effects of metal pollution on Mediterranean sponges: Species-specific inhibition of 2′,5′-oligoadenylate synthetase. Aquatic Toxicology, 2009, 94, 204-210.	4.0	10
106	ÂReproductive strategies of two common sympatric Mediterranean sponges: <i>Dysidea avara</i> (Dictyoceratida) and <i>Phorbas tenacior</i> (Poecilosclerida). PeerJ, 2018, 6, e5458.	2.0	10
107	Multipartner Symbiosis across Biological Domains: Looking at the Eukaryotic Associations from a Microbial Perspective. MSystems, 2019, 4, .	3.8	9
108	Ethical Dilemmas and Areas of Social Work Intervention in Spain. Journal of Social Service Research, 2020, 46, 55-70.	1.3	9

#	Article	IF	CITATIONS
109	Microsatellites from sponge genomes: the number necessary for detecting genetic structure in Hemimycale columella populations. Aquatic Biology, 2015, 24, 25-34.	1.4	9
110	<i>Guitarra Flamenca</i> sp. nov. (Porifera: Poecilosclerida) With a Sem Revision of the Spiny Isochelae and Placochelae in the Genus. Journal of the Marine Biological Association of the United Kingdom, 1998, 78, 807-819.	0.8	7
111	Characterization of nine polymorphic microsatellite loci for the calcareous sponge Paraleucilla magna Klautau et al. 2004 introduced to the Mediterranean Sea. Conservation Genetics Resources, 2012, 4, 403-405.	0.8	7
112	Description of two new genera (Antarctotetilla, Levantiniella) and a new species of Tetillidae. Zootaxa, 2018, 4455, 295-321.	0.5	3
113	Asexual reproduction and heterozygote selection in an Antarctic demosponge (Stylocordyla) Tj ETQq1 1 0.78431	.4 ₁₉ BT /O	verlock 10 Tf
114	The non-indigenous and invasive species Paraleucilla magna Klautau, Monteiro & Borojevic, 2004 (Porifera: Calcarea) in the Algerian coast (Southwestern of Mediterranean Sea). Acta Adriatica, 2019, 60, 41-46.	0.7	2
115	Ethical decision-making of social workers in Spain during COVID-19: Cases and responses. Qualitative Social Work, 2023, 22, 86-103.	1.4	2
116	Contrasting biological features in morphologically cryptic Mediterranean sponges. PeerJ, 2017, 5, e3490.	2.0	2
117	Preface. Advances in Marine Biology, 2012, 61, ix-x.	1.4	1
118	Redescription and establishment of a holotype and three paratypes for the species <i>Hemimycale mediterranea</i> sp. nov PeerJ, 2017, 5, e3426.	2.0	1
119	Unique spicules may confound species differentiation: taxonomy and biogeography of <i>Melonanchora</i> Carter, 1874 and two new related genera (Myxillidae: Poecilosclerida) from the Okhotsk Sea. PeerJ, 2021, 9, e12515.	2.0	1