List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6304326/publications.pdf Version: 2024-02-01

PAI KISHODE

#	Article	IF	CITATIONS
1	Embryonic Stem Cell–Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circulation Research, 2015, 117, 52-64.	2.0	598
2	Exosomes From Human CD34 ⁺ Stem Cells Mediate Their Proangiogenic Paracrine Activity. Circulation Research, 2011, 109, 724-728.	2.0	550
3	Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression. Circulation Research, 2009, 104, 1209-1216.	2.0	344
4	IL-10 Inhibits Inflammation and Attenuates Left Ventricular Remodeling After Myocardial Infarction via Activation of STAT3 and Suppression of HuR. Circulation Research, 2009, 104, e9-18.	2.0	324
5	Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nature Medicine, 2005, 11, 1197-1204.	15.2	286
6	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	1.8	284
7	Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nature Communications, 2019, 10, 4317.	5.8	280
8	Sonic Hedgehog–Modified Human CD34+ Cells Preserve Cardiac Function After Acute Myocardial Infarction. Circulation Research, 2012, 111, 312-321.	2.0	170
9	Interleukin-10 Treatment Attenuates Pressure Overload–Induced Hypertrophic Remodeling and Improves Heart Function via Signal Transducers and Activators of Transcription 3–Dependent Inhibition of Nuclear Factor-κB. Circulation, 2012, 126, 418-429.	1.6	160
10	More Than Tiny Sacks. Circulation Research, 2016, 118, 330-343.	2.0	159
11	Cardiovascular Manifestations of COVID-19 Infection. Cells, 2020, 9, 2508.	1.8	142
12	Interleukin-10 Deficiency Impairs Bone Marrow–Derived Endothelial Progenitor Cell Survival and Function in Ischemic Myocardium. Circulation Research, 2011, 109, 1280-1289.	2.0	129
13	MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochemical and Biophysical Research Communications, 2016, 471, 423-429.	1.0	113
14	Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovascular Research, 2017, 113, 938-949.	1.8	101
15	Interleukin-10 Deficiency Alters Endothelial Progenitor Cell–Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment. Circulation Research, 2020, 126, 315-329.	2.0	97
16	Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy. Circulation Research, 2016, 118, 1208-1222.	2.0	92
17	Enhanced Angiogenic and Cardiomyocyte Differentiation Capacity of Epigenetically Reprogrammed Mouse and Human Endothelial Progenitor Cells Augments Their Efficacy for Ischemic Myocardial Repair. Circulation Research, 2012, 111, 180-190.	2.0	88
18	Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury. Circulation Research, 2019, 125, 14-25.	2.0	81

#	Article	IF	CITATIONS
19	Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. European Heart Journal, 2018, 39, 4150-4158.	1.0	79
20	Myocardial knockdown of mRNAâ€stabilizing protein HuR attenuates postâ€MI inflammatory response and left ventricular dysfunction in ILâ€10â€null mice. FASEB Journal, 2010, 24, 2484-2494.	0.2	74
21	A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. Journal of Molecular and Cellular Cardiology, 2015, 81, 49-53.	0.9	74
22	The cytoskeletal protein ezrin regulates EC proliferation and angiogenesis via TNF-α–induced transcriptional repression of cyclin A. Journal of Clinical Investigation, 2005, 115, 1785-1796.	3.9	70
23	Bone Marrow Progenitor Cell Therapy-Mediated Paracrine Regulation of Cardiac miRNA-155 Modulates Fibrotic Response in Diabetic Hearts. PLoS ONE, 2013, 8, e60161.	1.1	68
24	Negative Regulation of miR-375 by Interleukin-10 Enhances Bone Marrow-Derived Progenitor Cell-Mediated Myocardial Repair and Function After Myocardial Infarction. Stem Cells, 2015, 33, 3519-3529.	1.4	63
25	Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury. Journal of the American College of Cardiology, 2015, 66, 2214-2226.	1.2	60
26	Therapeutic manipulation of angiogenesis with miR-27b. Vascular Cell, 2015, 7, 6.	0.2	57
27	Interleukin-10 Inhibits Bone Marrow Fibroblast Progenitor Cell–Mediated Cardiac Fibrosis in Pressure-Overloaded Myocardium. Circulation, 2017, 136, 940-953.	1.6	57
28	Extracellular Vesicles and the Application of System Biology and Computational Modeling in Cardiac Repair. Circulation Research, 2018, 123, 188-204.	2.0	57
29	Mitochondrial dysfunction and its impact on diabetic heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1098-1105.	1.8	53
30	Targeting exosomeâ€associated human antigen R attenuates fibrosis and inflammation in diabetic heart. FASEB Journal, 2020, 34, 2238-2251.	0.2	50
31	Restoration of Hydrogen Sulfide Production in Diabetic Mice Improves Reparative Function of Bone Marrow Cells. Circulation, 2016, 134, 1467-1483.	1.6	45
32	Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biology, 2020, 37, 101704.	3.9	43
33	Interleukin-10 Deficiency Impairs Reparative Properties of Bone Marrow-Derived Endothelial Progenitor Cell Exosomes. Tissue Engineering - Part A, 2017, 23, 1241-1250.	1.6	41
34	Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide. Redox Biology, 2018, 16, 215-225.	3.9	41
35	Roles of STATs signaling in cardiovascular diseases. Jak-stat, 2012, 1, 118-124.	2.2	40
36	Tiny Shuttles for Information Transfer: Exosomes in Cardiac Health and Disease. Journal of Cardiovascular Translational Research, 2016, 9, 169-175.	1.1	39

#	Article	IF	CITATIONS
37	Sirtuinâ€6 deficiency exacerbates diabetesâ€induced impairment of wound healing. Experimental Dermatology, 2015, 24, 773-778.	1.4	37
38	Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. Journal of Molecular and Cellular Cardiology, 2015, 89, 203-213.	0.9	36
39	Tumor Necrosis Factor–Mediated E2F1 Suppression in Endothelial Cells. Circulation Research, 2003, 93, 932-940.	2.0	30
40	E2F1 suppresses cardiac neovascularization by down-regulating VEGF and PIGF expression. Cardiovascular Research, 2014, 104, 412-422.	1.8	27
41	Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 2017, 38, ehw324.	1.0	27
42	Stem Cell Exosomes: Cell-FreeTherapy for Organ Repair. Methods in Molecular Biology, 2017, 1553, 315-321.	0.4	27
43	Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiation Research, 2017, 188, 191-203.	0.7	25
44	Myofibroblast-Derived Exosome Induce Cardiac Endothelial Cell Dysfunction. Frontiers in Cardiovascular Medicine, 2021, 8, 676267.	1.1	25
45	IL-10 Accelerates Re-Endothelialization and Inhibits Post-Injury Intimal Hyperplasia following Carotid Artery Denudation. PLoS ONE, 2016, 11, e0147615.	1.1	24
46	Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix. Journal of Molecular and Cellular Cardiology, 2014, 74, 231-239.	0.9	22
47	Cellâ€Free Mitochondrial DNA as a Potential Biomarker for Astronauts' Health. Journal of the American Heart Association, 2021, 10, e022055.	1.6	22
48	Role of Circular RNAs in Cardiovascular Disease. Journal of Cardiovascular Pharmacology, 2020, 76, 128-137.	0.8	20
49	Gene therapy for restenosis: Biological solution to a biological problem. Journal of Molecular and Cellular Cardiology, 2007, 42, 461-468.	0.9	19
50	Podoplanin neutralization improves cardiac remodeling and function after myocardial infarction. JCI Insight, 2019, 4, .	2.3	19
51	IL-10 provides cardioprotection in diabetic myocardial infarction via upregulation of Heme clearance pathways. JCI Insight, 2020, 5, .	2.3	19
52	Functionally Novel Tumor Necrosis Factor-α–Modulated CHR-Binding Protein Mediates Cyclin A Transcriptional Repression in Vascular Endothelial Cells. Circulation Research, 2002, 91, 307-314.	2.0	15
53	Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1014-H1029.	1.5	14
54	Inhibition of Sam68 triggers adipose tissue browning. Journal of Endocrinology, 2015, 225, 181-189.	1.2	13

#	Article	IF	CITATIONS
55	Cardiac Remodeling During Pregnancy With Metabolic Syndrome. Circulation, 2021, 143, 699-712.	1.6	11
56	Endothelial Progenitor Cells: Procedure for Cell Isolation and Applications. Methods in Molecular Biology, 2017, 1553, 85-89.	0.4	10
57	Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells, 2021, 10, 387.	1.8	9
58	Characterization of βARKct engineered cellular extracellular vesicles and model specific cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1276-H1289.	1.5	9
59	Divergent Modification of Low-Dose 56Fe-Particle and Proton Radiation on Skeletal Muscle. Radiation Research, 2013, 180, 455.	0.7	8
60	Induced Pluripotent Stem Cells Derived Extracellular Vesicles. Circulation Research, 2018, 122, 197-198.	2.0	8
61	The Nervous Heart. Circulation Research, 2015, 117, 980-981.	2.0	7
62	Identification and Comparison of Hyperglycemia-Induced Extracellular Vesicle Transcriptome in Different Mouse Stem Cells. Cells, 2020, 9, 2098.	1.8	7
63	Unfathomed Nanomessages to the Heart: Translational Implications of Stem Cell-Derived, Progenitor Cell Exosomes in Cardiac Repair and Regeneration. Cells, 2021, 10, 1811.	1.8	7
64	Phosphatidylinositol-4,5-Bisphosphate Binding to Amphiphysin-II Modulates T-Tubule Remodeling: Implications for Heart Failure. Frontiers in Physiology, 2021, 12, 782767.	1.3	6
65	Space flight associated changes in astronauts' plasmaâ€derived small extracellular vesicle microRNA: Biomarker identification. Clinical and Translational Medicine, 2022, 12, .	1.7	6
66	Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Frontiers in Physiology, 2021, 12, 667278.	1.3	5
67	Serumâ€Derived Small Extracellular Vesicles From Diabetic Mice Impair Angiogenic Property of Microvascular Endothelial Cells: Role of EZH2. Journal of the American Heart Association, 2021, 10, e019755.	1.6	5
68	Genetic deletion of TNFR2 augments inflammatory response and blunts satelliteâ€cellâ€mediated recovery response in a hind limb ischemia model. FASEB Journal, 2015, 29, 1208-1219.	0.2	4
69	Induced Pluripotent Cells in Cardiovascular Biology. Progress in Molecular Biology and Translational Science, 2012, 111, 27-49.	0.9	3
70	μ-Calpain as a Novel Target for Impairment of Nitric Oxide-Mediated Vascular Relaxation in Diabetes: A Mini Review. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 09, .	0.1	3
71	Mesenchymal Stromal Cell Exosomes in Cardiac Repair. Current Cardiology Reports, 2022, 24, 405-417.	1.3	3
72	Basic Cardiovascular Sciences Conference 2016. Circulation Research, 2016, 119, 708-710.	2.0	2

#	Article	IF	CITATIONS
73	Reprogrammed Human Endothelial Cells. Circulation Research, 2017, 120, 756-758.	2.0	2
74	Cardiac progenitor cells: old is not always gold. Journal of Physiology, 2017, 595, 6221-6222.	1.3	2
75	STK35 Gene Therapy Attenuates Endothelial Dysfunction and Improves Cardiac Function in Diabetes. Frontiers in Cardiovascular Medicine, 2021, 8, 798091.	1.1	2
76	Young Hearts Run Free. Circulation Research, 2017, 120, 751-752.	2.0	1
77	Abstract 14287: Ang II-induced Pathological Autophagy is Inhibited by IL-10 via Akt Dependent Inhibition of Beclin 1 in Mice Heart. Circulation, 2015, 132, .	1.6	1
78	Abstract 256: Cardiac Fibroblast-derived Exosomes Mediate Endothelial Dysfunction and Heart Failure. Circulation Research, 2019, 125, .	2.0	1
79	Aging is associated with cardiac autonomic nerve fiber depletion and reduced cardiac and circulating BDNF levels. Journal of Geriatric Cardiology, 2021, 18, 549-559.	0.2	1
80	Three-dimensional unity of engineered heart tissue mimics the heart better than two-dimensional cellular diversity. Cardiovascular Research, 2021, 117, 1995-1997.	1.8	0
81	Abstract 11059: Role of Sirtuin 6 in Macrophage Polarization and Cardiac Repair in Diabetes. Circulation, 2014, 130, .	1.6	Ο
82	Abstract 16788: Delivery of Pluripotent Stem Cell Specific Microrna-294 Induces Cardiomyocyte Proliferation Augmenting Cardiac Function After Myocardial Infarction. Circulation, 2014, 130, .	1.6	0
83	Abstract 172: Interleukin-10-mediated Activation of AKT and Bcl2 Inhibits Chronic Angiotensin II-induced Pathological Autophagy. Circulation Research, 2015, 117, .	2.0	Ο
84	Abstract 12739: Microrna-294 Modulates Cardiomyocyte Proliferation Following Myocardial Infarction. Circulation, 2015, 132, .	1.6	0
85	Abstract 99: IL10-inhibits Fibroblast Progenitor Cell-mediated Cardiac Fibrosis in Pressure-overloaded Myocardium. Circulation Research, 2016, 119, .	2.0	0
86	Abstract 288: Circular RNA CircFNDC3b Modulates Cardiac Repair After Myocardial Infarction via FUS-1/VEGF-A Axis. Circulation Research, 2018, 123, .	2.0	0
87	Abstract 522: IL-10 Knockout Bone Marrow Fibroblast Progenitor Cells-derived Exosomes Activate Cardiac Fibroblast and Exaggerate Pressure Overload-induced Fibrosis in Mice Heart. Circulation Research, 2019, 125, .	2.0	0
88	Abstract 362: Role of Dysregulated Exosomal MiRNAs in Functional Impairment of Cardiac Endothelial Cells. Circulation Research, 2020, 127, .	2.0	0
89	Abstract 11333: Muscle Specific MicroRNA-499-5p Impairs Angiogenesis in Ischemic Hindlimb of Diabetic Micehindlimb of Diabetic Mice. Circulation, 2021, 144, .	1.6	0