Lifan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6303654/publications.pdf

Version: 2024-02-01

430754 233338 5,152 47 18 45 h-index citations g-index papers 49 49 49 5580 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ACAT2 Is a Novel Negative Regulator of Pig Intramuscular Preadipocytes Differentiation. Biomolecules, 2022, 12, 237.	1.8	5
2	MiR-218-5p Affects Subcutaneous Adipogenesis by Targeting ACSL1, a Novel Candidate for Pig Fat Deposition. Genes, 2022, 13, 260.	1.0	7
3	MiR-144 regulates adipogenesis by mediating formation of C/EBPα-FOXO1 protein complex. Biochemical and Biophysical Research Communications, 2022, 612, 126-133.	1.0	2
4	Nonivamide induces brown fat-like characteristics in porcine subcutaneous adipocytes. Biochemical and Biophysical Research Communications, 2022, 619, 68-75.	1.0	2
5	<scp>miR</scp> â€32â€5p Regulates Lipid Accumulation in Intramuscular Fat of Erhualian Pigs by Suppressing <scp><i>KLF3</i></scp> . Lipids, 2021, 56, 279-287.	0.7	9
6	The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Molecular and Cellular Biochemistry, 2021, 476, 109-123.	1.4	31
7	<i>UBXN1</i> is a strong candidate gene in regulation of pork water-holding capacity. Archives Animal Breeding, 2021, 64, 109-118.	0.5	О
8	A novel c652C>T mutation in UCHL1 gene is associated with the growth performance in Yangzhou goose. Poultry Science, 2021, 100, 101089.	1.5	2
9	ldentification and Validation of Marketing Weight-Related SNP Markers Using SLAF Sequencing in Male Yangzhou Geese. Genes, 2021, 12, 1203.	1.0	13
10	Hoxa11 and Hoxa13 facilitate slowâ€twitch muscle formation in C2C12 cells and indirectly affect the lipid deposition of 3T3â€L1 cells. Animal Science Journal, 2021, 92, e13544.	0.6	1
11	SESN3 Inhibited SMAD3 to Relieve Its Suppression for MiR-124, Thus Regulating Pre-Adipocyte Adipogenesis. Genes, 2021, 12, 1852.	1.0	4
12	Revisiting the Pig IGHC Gene Locus in Different Breeds Uncovers Nine Distinct IGHG Genes. Journal of Immunology, 2020, 205, 2137-2145.	0.4	7
13	Promoter CpG methylation status affects ADRP gene expression level and intramuscular fat content in pigs. Italian Journal of Animal Science, 2020, 19, 783-791.	0.8	O
14	MiR-144-3p Targets FoxO1 to Reduce Its Regulation of Adiponectin and Promote Adipogenesis. Frontiers in Genetics, 2020, 11, 603144.	1.1	16
15	SMARCA2 is regulated by NORFA/miR-29c, a novel pathway related to female fertility, controls granulosa cell apoptosis. Journal of Cell Science, 2020, 133, .	1.2	14
16	NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Communications Biology, 2020, 3, 131.	2.0	34
17	Serum metabolomic investigations of mulberry leaf powder supplementation in Chinese Erhualian pigs. Journal of Animal and Feed Sciences, 2020, 29, 132-142.	0.4	1
18	Genomeâ€wide identification and comparison of <scp>mRNA</scp> s, lnc <scp>RNA</scp> s and circ <scp>RNA</scp> s in porcine intramuscular, subcutaneous, retroperitoneal and mesenteric adipose tissues. Animal Genetics, 2019, 50, 228-241.	0.6	17

#	Article	IF	CITATIONS
19	GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: Long noncoding RNAs in adipogenesis and adipose development of meat animals 12. Journal of Animal Science, 2019, 97, 2644-2657.	0.2	4
20	Myostatin/SMAD4 signaling-mediated regulation of miR-124-3p represses glucocorticoid receptor expression and inhibits adipocyte differentiation. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E635-E645.	1.8	19
21	Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. Journal of Lipid Research, 2019, 60, 767-782.	2.0	45
22	The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Molecular and Cellular Endocrinology, 2018, 476, 84-95.	1.6	34
23	Genetic variants in <i><scp>IL</scp>15</i> promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Animal Genetics, 2018, 49, 19-28.	0.6	4
24	A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. Journal of Animal Science and Biotechnology, 2018, 9, 76.	2.1	59
25	A genomeâ€wide association study suggests several novel candidate genes for carcass traits in Chinese Simmental beef cattle. Animal Genetics, 2018, 49, 312-316.	0.6	20
26	Muscle-specific downregulation of GR levels inhibits adipogenesis in porcine intramuscular adipocyte tissue. Scientific Reports, 2017, 7, 510.	1.6	13
27	miR-130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression. Gene, 2017, 636, 23-29.	1.0	26
28	Genome-wide genetic structure and differentially selected regions among Landrace, Erhualian, and Meishan pigs using specific-locus amplified fragment sequencing. Scientific Reports, 2017, 7, 10063.	1.6	19
29	Testosterone Deficiency Induces Changes of the Transcriptomes of Visceral Adipose Tissue in Miniature Pigs Fed a High-Fat and High-Cholesterol Diet. International Journal of Molecular Sciences, 2016, 17, 2125.	1.8	4
30	TGF- \hat{l}^2 signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death and Disease, 2016, 7, e2476-e2476.	2.7	115
31	A comprehensive transcriptomic view on the role of SMAD4 gene by RNAi-mediated knockdown in porcine follicular granulosa cells. Reproduction, 2016, 152, 81-89.	1.1	23
32	C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene. Biochemical and Biophysical Research Communications, 2016, 472, 68-74.	1.0	14
33	Long noncoding RNAs in regulating adipogenesis: new RNAs shed lights on obesity. Cellular and Molecular Life Sciences, 2016, 73, 2079-2087.	2.4	92
34	Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing. PLoS ONE, 2015, 10, e0131572.	1.1	25
35	Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Research in Veterinary Science, 2015, 99, 99-104.	0.9	21
36	Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet. BMC Genomics, 2015, 16, 59.	1.2	28

#	Article	IF	CITATIONS
37	Genome Wide Screening of Candidate Genes for Improving Piglet Birth Weight Using High and Low Estimated Breeding Value Populations. International Journal of Biological Sciences, 2014, 10, 236-244.	2.6	31
38	Castration-induced changes in microRNA expression profiles in subcutaneous adipose tissue of male pigs. Journal of Applied Genetics, 2014, 55, 259-266.	1.0	16
39	Emerging roles of zinc finger proteins in regulating adipogenesis. Cellular and Molecular Life Sciences, 2013, 70, 4569-4584.	2.4	71
40	MicroRNA Expression Profiling of the Porcine Developing Hypothalamus and Pituitary Tissue. International Journal of Molecular Sciences, 2013, 14, 20326-20339.	1.8	20
41	Interferon Induced <i>IFIT</i> Family Genes in Host Antiviral Defense. International Journal of Biological Sciences, 2013, 9, 200-208.	2.6	197
42	Reactomes of Porcine Alveolar Macrophages Infected with Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE, 2013, 8, e59229.	1.1	33
43	Genome-Wide Genetic Diversity and Differentially Selected Regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee Sheep. PLoS ONE, 2013, 8, e65942.	1.1	58
44	Quantitative Genomics of 30 Complex Phenotypes in Wagyu x Angus F ₁ Progeny. International Journal of Biological Sciences, 2012, 8, 838-858.	2.6	13
45	Polymorphism of the porcine CGA gene and its association with growth and carcass traits. South African Journal of Animal Sciences, 2011, 41, .	0.2	0
46	Mapping, CDNA Cloning and Tissue Expression of the Porcine Thyrotropin-Releasing Hormone Receptor Gene. Animal Biotechnology, 2011, 22, 30-36.	0.7	6
47	Serial Analysis of Gene Expression. Science, 1995, 270, 484-487.	6.0	3,976