Russell G Snell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6303409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Capra hircus chromosome 19 locus linked to milk production influences mammary conformation. Journal of Animal Science and Biotechnology, 2022, 13, 4.	2.1	3
2	Screening for phenotypic outliers identifies an unusually low concentration of a Î ² -lactoglobulin B protein isoform in bovine milk caused by a synonymous SNP. Genetics Selection Evolution, 2022, 54, 22.	1.2	4
3	ICARUS, an interactive web server for single cell RNA-seq analysis. Nucleic Acids Research, 2022, 50, W427-W433.	6.5	20
4	Proof of concept for multiplex amplicon sequencing for mutation identification using the MinION nanopore sequencer. Scientific Reports, 2022, 12, .	1.6	13
5	Testes of <i>DAZL</i> null neonatal sheep lack prospermatogonia but maintain normal somatic cell morphology and marker expression. Molecular Reproduction and Development, 2021, 88, 3-14.	1.0	8
6	Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci. ELife, 2021, 10, .	2.8	45
7	A Multi-Omic Huntington's Disease Transgenic Sheep-Model Database for Investigating Disease Pathogenesis. Journal of Huntington's Disease, 2021, 10, 423-434.	0.9	6
8	Front Cover Image, Volume 88, Issue 1, January 2021. Molecular Reproduction and Development, 2021, 88, i.	1.0	0
9	Advantage of including Genomic Information to Predict Breeding Values for Lactation Yields of Milk, Fat, and Protein or Somatic Cell Score in a New Zealand Dairy Goat Herd. Animals, 2021, 11, 24.	1.0	6
10	A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. International Journal of Molecular Sciences, 2021, 22, 13168.	1.8	31
11	Genetic parameters for total lactation yields of milk, fat, protein, and somatic cell score in New Zealand dairy goats. Animal Science Journal, 2020, 91, e13310.	0.6	14
12	Inconsistencies in histone acetylation patterns among different HD model systems and HD post-mortem brains. Neurobiology of Disease, 2020, 146, 105092.	2.1	5
13	A new mechanism for a familiar mutation – bovine DGAT1 K232A modulates gene expression through multi-junction exon splice enhancement. BMC Genomics, 2020, 21, 591.	1.2	15
14	DNA methylation study of Huntington's disease and motor progression in patients and in animal models. Nature Communications, 2020, 11, 4529.	5.8	45
15	Natural cryptic variation in epigenetic modulation of an embryonic gene regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13637-13646.	3.3	20
16	Genome-wide association studies of lactation yields of milk, fat, protein and somatic cell score in New Zealand dairy goats. Journal of Animal Science and Biotechnology, 2020, 11, 55.	2.1	25
17	Defining the origin and function of bovine milk proteins through genomics: The biological implications of manipulation and modification. , 2020, , 143-171.		2
18	Cerebral Vitamin B5 (D-Pantothenic Acid) Deficiency as a Potential Cause of Metabolic Perturbation and Neurodegeneration in Huntington's Disease. Metabolites, 2019, 9, 113.	1.3	47

#	Article	IF	CITATIONS
19	Chemical neuroanatomy of the substantia nigra in the ovine brain. Journal of Chemical Neuroanatomy, 2019, 97, 43-56.	1.0	9
20	Multiple QTL underlie milk phenotypes at the CSF2RB locus. Genetics Selection Evolution, 2019, 51, 3.	1.2	18
21	Evaluation of the performance of copy number variant prediction tools for the detection of deletions from whole genome sequencing data. Journal of Biomedical Informatics, 2019, 94, 103174.	2.5	20
22	Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle. Genetics Selection Evolution, 2019, 51, 62.	1.2	23
23	Widespread <i>cis</i> -regulation of RNA editing in a large mammal. Rna, 2019, 25, 319-335.	1.6	5
24	Penetrance and expressivity of the R858H <i>CACNA1C</i> variant in a fiveâ€generation pedigree segregating an arrhythmogenic channelopathy. Molecular Genetics & Genomic Medicine, 2019, 7, e00476.	0.6	11
25	Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network. ELife, 2019, 8, .	2.8	19
26	Emergence of breath testing as a new non-invasive diagnostic modality for neurodegenerative diseases. Brain Research, 2018, 1691, 75-86.	1.1	12
27	Modelling brain dopamine-serotonin vesicular transport disease in <i>Caenorhabditis elegans</i> . DMM Disease Models and Mechanisms, 2018, 11, .	1.2	8
28	Potential molecular consequences of transgene integration: The R6/2 mouse example. Scientific Reports, 2017, 7, 41120.	1.6	14
29	The New Zealand minds for minds autism spectrum disorder self-reported cohort. Research in Autism Spectrum Disorders, 2017, 36, 1-7.	0.8	4
30	Compound heterozygous <i>SLC19A3</i> mutations further refine the critical promoter region for biotin-thiamine-responsive basal ganglia disease. Journal of Physical Education and Sports Management, 2017, 3, a001909.	0.5	20
31	Alzheimer's disease markers in the aged sheep (Ovis aries). Neurobiology of Aging, 2017, 58, 112-119.	1.5	30
32	Functional confirmation of PLAG1 as the candidate causative gene underlying major pleiotropic effects on body weight and milk characteristics. Scientific Reports, 2017, 7, 44793.	1.6	45
33	Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11293-E11302.	3.3	78
34	Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q10 Deficiency in a Female Sib-Pair. JIMD Reports, 2017, 42, 31-36.	0.7	21
35	The Complexity of Clinical Huntington's Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers. Advances in Neurobiology, 2017, 15, 129-161.	1.3	9
36	DNA and RNA-sequence based GWAS highlights membrane-transport genes as key modulators of milk lactose content. BMC Genomics, 2017, 18, 968.	1.2	47

#	Article	IF	CITATIONS
37	Comparison of Huntington's disease CAG Repeat Length Stability in Human Motor Cortex and Cingulate Gyrus. Journal of Huntington's Disease, 2016, 5, 297-301.	0.9	5
38	Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition. Scientific Reports, 2016, 6, 25376.	1.6	103
39	Epigenetic regulation of pyruvate carboxylase gene expression in the postpartum liver. Journal of Dairy Science, 2016, 99, 5820-5827.	1.4	5
40	Metabolic disruption identified in the Huntington's disease transgenic sheep model. Scientific Reports, 2016, 6, 20681.	1.6	52
41	Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1650-1662.	1.8	38
42	Brain dopamineâ€serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder. Journal of Inherited Metabolic Disease, 2016, 39, 305-308.	1.7	41
43	Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease. Biochemical and Biophysical Research Communications, 2015, 468, 161-166.	1.0	61
44	Rapid RNA analysis of individual Caenorhabditis elegans. MethodsX, 2015, 2, 59-63.	0.7	58
45	Phenotypic population screen identifies a new mutation in bovine DGAT1 responsible for unsaturated milk fat. Scientific Reports, 2015, 5, 8484.	1.6	14
46	Expression Variants of the Lipogenic AGPAT6 Gene Affect Diverse Milk Composition Phenotypes in Bos taurus. PLoS ONE, 2014, 9, e85757.	1.1	58
47	Estimation of genetic and crossbreeding parameters of fatty acid concentrations in milk fat predicted by mid-infrared spectroscopy in New Zealand dairy cattle. Journal of Dairy Research, 2014, 81, 340-349.	0.7	25
48	Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nature Communications, 2014, 5, 5861.	5.8	108
49	The expression of genes involved in hepatic metabolism is altered by temporary changes to milking frequency. Journal of Dairy Science, 2014, 97, 838-850.	1.4	9
50	Early and progressive circadian abnormalities in Huntington's disease sheep are unmasked by social environment. Human Molecular Genetics, 2014, 23, 3375-3383.	1.4	78
51	Gene expression in liver and adipose tissue is altered during and after temporary changes to postpartum milking frequency. Journal of Dairy Science, 2014, 97, 2701-2717.	1.4	6
52	Rapid, quantitative analysis of 3′- and 6′-sialyllactose in milk by flow-injection analysis–mass spectrometry: Screening of milks for naturally elevated sialyllactose concentration. Journal of Dairy Science, 2013, 96, 7684-7691.	1.4	21
53	Expression of key lipid metabolism genes in adipose tissue is not altered by once-daily milking during a feed restriction of grazing dairy cows. Journal of Dairy Science, 2013, 96, 7753-7764.	1.4	5
54	Reducing milking frequency during nutrient restriction has no effect on the hepatic transcriptome of lactating dairy cattle. Physiological Genomics, 2013, 45, 1157-1167.	1.0	10

#	Article	IF	CITATIONS
55	Further Molecular Characterisation of the OVT73 Transgenic Sheep Model of Huntington's Disease Identifies Cortical Aggregates. Journal of Huntington's Disease, 2013, 2, 279-295.	0.9	47
56	A Triad of Highly Divergent Polymeric Immunoglobulin Receptor (PIGR) Haplotypes with Major Effect on IgA Concentration in Bovine Milk. PLoS ONE, 2013, 8, e57219.	1.1	9
57	Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nature Genetics, 2012, 44, 390-397.	9.4	229
58	Metabolic proteomics of the liver and mammary gland during lactation. Journal of Proteomics, 2012, 75, 4429-4435.	1.2	39
59	Genetic variation in <i>PLAG1</i> associates with early life body weight and peripubertal weight and growth in <i>Bos taurus</i> . Animal Genetics, 2012, 43, 591-594.	0.6	73
60	Nonâ€replication of genomeâ€wideâ€based associations of efficient food conversion in dairy cows. Animal Genetics, 2012, 43, 781-784.	0.6	6
61	An ovine transgenic Huntington's disease model. Human Molecular Genetics, 2010, 19, 1873-1882.	1.4	166
62	Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland. Physiological Genomics, 2010, 41, 21-32.	1.0	41
63	Mapping a quantitative trait locus for the concentration of β-lactoglobulin in milk, and the effect of β-lactoglobulin genetic variants on the composition of milk from Holstein-Friesian x Jersey crossbred cows. New Zealand Veterinary Journal, 2010, 58, 1-5.	0.4	16
64	Mutation in Bovine Î ² -Carotene Oxygenase 2 Affects Milk Color. Genetics, 2009, 182, 923-926.	1.2	89
65	A splice variant of the TATA-box binding protein encoding the polyglutamine-containing N-terminal domain that accumulates in Alzheimer's disease. Brain Research, 2009, 1268, 190-199.	1.1	9
66	Profiling the metabolic proteome of bovine mammary tissue. Proteomics, 2008, 8, 1502-1515.	1.3	32
67	Proteomic Analysis of Microsomes from Lactating Bovine Mammary Gland. Journal of Proteome Research, 2008, 7, 1427-1432.	1.8	29
68	A Mutation in Bovine Keratin 5 Causing Epidermolysis Bullosa Simplex, Transmitted by a Mosaic Sire. Journal of Investigative Dermatology, 2005, 124, 1170-1176.	0.3	25
69	Emerging technologies for identifying superior dairy cows in New Zealand. New Zealand Veterinary Journal, 2005, 53, 390-399.	0.4	8
70	TATA-binding protein in neurodegenerative disease. Neuroscience, 2005, 133, 863-872.	1.1	71
71	TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease. Molecular Brain Research, 2004, 125, 120-128.	2.5	21
72	Distribution of gephyrin in the human brain: an immunohistochemical analysis. Neuroscience, 2003, 116, 145-156,	1.1	22

#	Article	IF	CITATIONS
73	Association of gephyrin and glycine receptors in the human brainstem and spinal cord: an immunohistochemical analysis. Neuroscience, 2003, 122, 773-784.	1.1	33
74	Molecular investigation of TBP allele length:. Neurobiology of Disease, 2003, 13, 37-45.	2.1	31
75	lsoform Heterogeneity of the Human Gephyrin Gene (GPHN), Binding Domains to the Glycine Receptor, and Mutation Analysis in Hyperekplexia. Journal of Biological Chemistry, 2003, 278, 24688-24696.	1.6	113
76	Molecular Dissection of a Quantitative Trait Locus: A Phenylalanine-to-Tyrosine Substitution in the Transmembrane Domain of the Bovine Growth Hormone Receptor Is Associated With a Major Effect on Milk Yield and Composition. Genetics, 2003, 163, 253-266.	1.2	390
77	Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Human Molecular Genetics, 2002, 11, 853-860.	1.4	151
78	Positional Candidate Cloning of a QTL in Dairy Cattle: Identification of a Missense Mutation in the Bovine DGAT1 Gene with Major Effect on Milk Yield and Composition. Genome Research, 2002, 12, 222-231.	2.4	803
79	Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Molecular Brain Research, 2002, 109, 1-10.	2.5	54
80	Compound heterozygosity and nonsense mutations in the α1-subunit of the inhibitory glycine receptor in hyperekplexia. Human Genetics, 2001, 109, 267-270.	1.8	72
81	Amyloid-like inclusions in Huntington's disease. Neuroscience, 2000, 100, 677-680.	1.1	93
82	Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Human Molecular Genetics, 1998, 7, 1053-1057.	1.4	511
83	Molecular Genetic and Phenotypic Analysis Reveals Differences between TSC1 and TSC2 Associated Familial and Sporadic Tuberous Sclerosis. Human Molecular Genetics, 1997, 6, 2155-2161.	1.4	238
84	Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7239-7244.	3.3	925
85	Identification of the Tuberous Sclerosis Gene TSC1 on Chromosome 9q34. Science, 1997, 277, 805-808.	6.0	1,550
86	Structure and sequence of the bovine butyrophilin gene. Gene, 1997, 199, 57-62.	1.0	41
87	Late-onset Huntington's Disease: A Clinical and Molecular Study. Age and Ageing, 1994, 23, 445-448.	0.7	55
88	Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature Genetics, 1993, 4, 393-397.	9.4	672
89	A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 1993, 72, 971-983.	13.5	7,960
90	Molecular analysis and clinical correlations of the Huntington's disease mutation. Lancet, The, 1993, 342, 954-958.	6.3	103

#	Article	IF	CITATIONS
91	The isolation of cDNAs within the Huntington disease region by hybridisation of yeast artificial chromosomes to a cDNA library. Human Molecular Genetics, 1993, 2, 305-309.	1.4	16
92	Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell, 1992, 68, 799-808.	13.5	2,464
93	Cloning of the α–adducin gene from the Huntington's disease candidate region of chromosome 4 by exon amplification. Nature Genetics, 1992, 2, 223-227.	9.4	47
94	A simple vacuum blotter design. Nucleic Acids Research, 1991, 19, 6054-6054.	6.5	1
95	Mbol RFLP at the D4S43 (C4H) locus. Nucleic Acids Research, 1991, 19, 5445-5445.	6.5	1
96	Linkage disequilibrium in Huntington's disease: an improved localisation for the gene Journal of Medical Genetics, 1989, 26, 673-675.	1.5	77
97	Centrifugal transfer and sandwich hybridisation permit 12-hour Southern blot analyses. Nucleic Acids Research, 1987, 15, 7200-7200.	6.5	8
98	Chromosomal variations in Candida albicans. Nucleic Acids Research, 1987, 15, 3625-3625.	6.5	54
99	Separation of chromosomal DNA molecules fromC.albicansby pulsed field gel electropboresis. Nucleic Acids Research, 1986, 14, 4401-4420.	6.5	106