Huaping Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/63031/publications.pdf

Version: 2024-02-01

		28190	3	4900	
136	10,374	55		98	
papers	citations	h-index		g-index	
146	146	146		9277	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. Journal of the American Chemical Society, 2010, 132, 442-443.	6.6	643
2	Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Accounts of Chemical Research, 2013, 46, 1647-1658.	7.6	489
3	Tuning the Amphiphilicity of Building Blocks: Controlled Selfâ€Assembly and Disassembly for Functional Supramolecular Materials. Advanced Materials, 2009, 21, 2849-2864.	11.1	423
4	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
5	Visibleâ€Lightâ€Induced Selfâ€Healing Diselenideâ€Containing Polyurethane Elastomer. Advanced Materials, 2015, 27, 7740-7745.	11.1	308
6	Seleniumâ€Doped Carbon Quantum Dots for Freeâ€Radical Scavenging. Angewandte Chemie - International Edition, 2017, 56, 9910-9914.	7.2	276
7	Dynamic Diselenide Bonds: Exchange Reaction Induced by Visible Light without Catalysis. Angewandte Chemie - International Edition, 2014, 53, 6781-6785.	7.2	261
8	Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie - International Edition, 2018, 57, 2377-2382.	7.2	249
9	Controlled Selfâ€Assembly Manipulated by Chargeâ€Transfer Interactions: From Tubes to Vesicles. Angewandte Chemie - International Edition, 2008, 47, 9049-9052.	7.2	198
10	Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles: A Facile Approach toward Supramolecular Polymer Nanocontainers. Langmuir, 2010, 26, 709-715.	1.6	196
11	Seleniumâ€Containing Nanoparticles Combine the NK Cells Mediated Immunotherapy with Radiotherapy and Chemotherapy. Advanced Materials, 2020, 32, e1907568.	11.1	192
12	Selenium-containing block copolymers and their oxidation-responsive aggregates. Polymer Chemistry, 2010, 1, 1609.	1.9	181
13	Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures: Toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-Responsive Surfaces. Langmuir, 2005, 21, 1986-1990.	1.6	178
14	γâ∈Rayâ∈Responsive Supramolecular Hydrogel Based on a Diselenideâ∈Containing Polymer and a Peptide. Angewandte Chemie - International Edition, 2013, 52, 6233-6237.	7.2	170
15	Highly Efficient Dendrimer-Based Mimic of Glutathione Peroxidase. Journal of the American Chemical Society, 2004, 126, 10556-10557.	6.6	169
16	Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today, 2015, 10, 717-736.	6.2	167
17	Supramolecular Amphiphiles Based on a Waterâ€Soluble Chargeâ€Transfer Complex: Fabrication of Ultralong Nanofibers with Tunable Straightness. Angewandte Chemie - International Edition, 2009, 48, 8962-8965.	7.2	164
18	Radiation-Sensitive Diselenide Block Co-polymer Micellar Aggregates: Toward the Combination of Radiotherapy and Chemotherapy. Langmuir, 2011, 27, 5874-5878.	1.6	152

#	Article	IF	Citations
19	Seleniumâ€Containing Polymer@Metalâ€Organic Frameworks Nanocomposites as an Efficient Multiresponsive Drug Delivery System. Advanced Functional Materials, 2017, 27, 1605465.	7.8	139
20	Oxidation-Responsive Micelles Based on a Selenium-Containing Polymeric Superamphiphile. Langmuir, 2010, 26, 14414-14418.	1.6	133
21	Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly. Soft Matter, 2012, 8, 1460-1466.	1.2	132
22	Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment. Biomaterials, 2017, 133, 208-218.	5.7	124
23	Nonâ€Metalâ€Heteroatomâ€Doped Carbon Dots: Synthesis and Properties. Chemistry - A European Journal, 2019, 25, 1165-1176.	1.7	122
24	Switchable Catalytic Activity: Seleniumâ€Containing Peptides with Redoxâ€Controllable Selfâ€Assembly Properties. Angewandte Chemie - International Edition, 2013, 52, 7781-7785.	7.2	121
25	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
26	Selenium-Containing Polymers: Perspectives toward Diverse Applications in Both Adaptive and Biomedical Materials. Macromolecules, 2018, 51, 7435-7455.	2.2	116
27	Tellurium-Containing Polymer Micelles: Competitive-Ligand-Regulated Coordination Responsive Systems. Journal of the American Chemical Society, 2014, 136, 5132-5137.	6.6	112
28	Ultra-sensitive ROS-responsive tellurium-containing polymers. Chemical Communications, 2015, 51, 7069-7071.	2.2	110
29	Photoresponsive Supramolecular Amphiphiles for Controlled Selfâ€Assembly of Nanofibers and Vesicles. Advanced Materials, 2010, 22, 2553-2555.	11.1	109
30	Visible Light-Induced Plasticity of Shape Memory Polymers. ACS Applied Materials & Emp; Interfaces, 2017, 9, 33169-33175.	4.0	106
31	Wavelengthâ€Controlled Dynamic Metathesis: A Lightâ€Driven Exchange Reaction between Disulfide and Diselenide Bonds. Angewandte Chemie - International Edition, 2018, 57, 16426-16430.	7.2	103
32	Coordination-responsive selenium-containing polymer micelles for controlled drug release. Chemical Science, 2012, 3, 3403.	3.7	102
33	Diselenide–Pemetrexed Assemblies for Combined Cancer Immunoâ€, Radioâ€, and Chemotherapies. Angewandte Chemie - International Edition, 2020, 59, 2700-2704.	7.2	100
34	Dynamic Chemistry of Selenium: Se–N and Se–Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Letters, 2016, 5, 78-82.	2.3	94
35	Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chemistry of Materials, 2007, 19, 14-17.	3.2	93
36	Red light responsive diselenide-containing block copolymer micelles. Journal of Materials Chemistry B, 2013, 1, 740-743.	2.9	92

#	Article	IF	CITATIONS
37	Tunable Structural Color Patterns Based on the Visibleâ€Lightâ€Responsive Dynamic Diselenide Metathesis. Advanced Materials, 2020, 32, e1907569.	11.1	91
38	Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. Chemical Communications, 2009, , 5380.	2.2	90
39	Dual Redox Responsive Coassemblies of Diselenide-Containing Block Copolymers and Polymer Lipids. Langmuir, 2014, 30, 5628-5636.	1.6	84
40	The Combination of Chemotherapy and Radiotherapy towards More Efficient Drug Delivery. Chemistry - an Asian Journal, 2014, 9, 48-57.	1.7	72
41	Hyperbranched polyselenides as glutathione peroxidase mimics. Chemical Communications, 2006, , 796.	2.2	71
42	Mimicking Biological Structured Surfaces by Phase-Separation Micromolding. Langmuir, 2009, 25, 4365-4369.	1.6	70
43	Selenium–Platinum Coordination Dendrimers with Controlled Anti-Cancer Activity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3609-3614.	4.0	68
44	Reversible Dispersion of Single-Walled Carbon Nanotubes Based on a CO ₂ -Responsive Dispersant. Langmuir, 2010, 26, 16667-16671.	1.6	67
45	Selenium-Containing Amphiphiles Reduced and Stabilized Gold Nanoparticles: Kill Cancer Cells via Reactive Oxygen Species. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22106-22112.	4.0	66
46	Oxidative Polymerization in Living Cells. Journal of the American Chemical Society, 2021, 143, 10709-10717.	6.6	66
47	Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids. ACS Applied Materials & Distribution (2015), 7, 16054-16060.	4.0	65
48	Fabrication of Reactivated Biointerface for Dualâ€Controlled Reversible Immobilization of Cytochrome c. Advanced Materials, 2009, 21, 4362-4365.	11.1	64
49	Block copolymer aggregates with photo-responsive switches: Towards a controllable supramolecular container. Polymer, 2009, 50, 4821-4828.	1.8	63
50	Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stamps. Journal of the American Chemical Society, 2009, 131, 797-803.	6.6	63
51	Diselenide-Containing Hyperbranched Polymer with Light-Induced Cytotoxicity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12924-12929.	4.0	62
52	Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer. Polymer Chemistry, 2015, 6, 2817-2821.	1.9	60
53	Selenium–Platinum Coordination Compounds as Novel Anticancer Drugs: Selectively Killing Cancer Cells via a Reactive Oxygen Species (ROS)â€Mediated Apoptosis Route. Chemistry - an Asian Journal, 2014, 9, 2295-2302.	1.7	59
54	Biostructure-like Surfaces with Thermally Responsive Wettability Prepared by Temperature-Induced Phase Separation Micromolding. Langmuir, 2010, 26, 9673-9676.	1.6	55

#	Article	IF	CITATIONS
55	Unconventional Layerâ€byâ€Layer Assembly: Surface Molecular Imprinting and Its Applications. Small, 2012, 8, 517-523.	5.2	52
56	Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie, 2018, 130, 2401-2406.	1.6	52
57	Surface Modification Based on Diselenide Dynamic Chemistry: Towards Liquid Motion and Surface Bioconjugation. Angewandte Chemie - International Edition, 2019, 58, 542-546.	7.2	49
58	A New Dynamic Covalent Bond of SeN: Towards Controlled Selfâ€Assembly and Disassembly. Chemistry - A European Journal, 2013, 19, 9506-9510.	1.7	48
59	Selenium-Containing Nanomaterials for Cancer Treatment. Cell Reports Physical Science, 2020, 1, 100111.	2.8	46
60	Single-Molecule Force Spectroscopy of Selenium-Containing Amphiphilic Block Copolymer: Toward Disassembling the Polymer Micelles. Langmuir, 2012, 28, 9601-9605.	1.6	45
61	Seleniumâ€Doped Carbon Quantum Dots for Freeâ€Radical Scavenging. Angewandte Chemie, 2017, 129, 10042-10046.	1.6	45
62	Block Copolymer Micelles as Matrixes for Incorporating Diselenide Compounds:Â A Model System for a Water-Soluble Glutathione Peroxidase Mimic Fine-Tuned by Ionic Strength. Langmuir, 2006, 22, 5552-5555.	1.6	44
63	Unconstrained 3D Shape Programming with Lightâ€Induced Stress Gradient. Advanced Materials, 2021, 33, e2105194.	11.1	44
64	Single-Molecule Study on Intermolecular Interaction between C60and Porphyrin Derivatives: Toward Understanding the Strength of the Multivalency. Langmuir, 2009, 25, 6627-6632.	1.6	43
65	Fabrication of well-defined crystalline azacalixarene nanosheets assisted by Seâ√N non-covalent interactions. Chemical Communications, 2012, 48, 7495.	2.2	43
66	Tuning Polymeric Amphiphilicity via Se–N Interactions: Towards One‧tep Double Emulsion for Highly Selective Enzyme Mimics. Small, 2015, 11, 1537-1541.	5.2	43
67	Visibleâ€Lightâ€Induced Disruption of Diselenideâ€Containing Layerâ€byâ€Layer Films: Toward Combination of Chemotherapy and Photodynamic Therapy. Small, 2013, 9, 3981-3986.	5.2	42
68	Hydrogen-bonding based multilayer assemblies by self-deposition of dendrimer. Chemical Communications, 2003, , 874-875.	2.2	41
69	Stimuli-Responsive Layer-by-Layer Tellurium-Containing Polymer Films for the Combination of Chemotherapy and Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17004-17010.	4.0	41
70	Visible-light-induced metathesis reaction between diselenide and ditelluride. Chemical Communications, 2019, 55, 2813-2816.	2.2	40
71	From Selenite to Diselenide-Containing Drug Delivery Systems. , 2020, 2, 1173-1177.		40
72	UV-Responsive Polymeric Superamphiphile Based on a Complex of Malachite Green Derivative and a Double Hydrophilic Block Copolymer. Langmuir, 2011, 27, 14108-14111.	1.6	39

#	Article	IF	Citations
73	Fullyâ€Branched Hyperbranched Polymers with a Diselenide Core as Glutathione Peroxidase Mimics. Macromolecular Rapid Communications, 2012, 33, 798-804.	2.0	38
74	ROS-triggered degradation of selenide-containing polymers based on selenoxide elimination. Polymer Chemistry, 2019, 10, 2039-2046.	1.9	38
75	Cancer Therapy by Targeting Thioredoxin Reductase Based on Selenium-Containing Dynamic Covalent Bond. CCS Chemistry, 2020, 2, 225-235.	4.6	38
76	Diselenide covalent chemistry at the interface: stabilizing an asymmetric diselenide-containing polymer via micelle formation. Polymer Chemistry, 2016, 7, 6708-6713.	1.9	37
77	Porous Multilayer-Coated AFM Tips for Dip-Pen Nanolithography of Proteins. Journal of the American Chemical Society, 2009, 131, 7526-7527.	6.6	36
78	Self-assembly regulated anticancer activity of platinum coordinated selenomethionine. Biomaterials, 2018, 157, 17-25.	5.7	36
79	Selenium-Containing Carrier-Free Assemblies with Aggregation-Induced Emission Property Combine Cancer Radiotherapy with Chemotherapy. ACS Applied Bio Materials, 2020, 3, 1283-1292.	2.3	36
80	Anti-recurrence/metastasis and chemosensitization therapy with thioredoxin reductase-interfering drug delivery system. Biomaterials, 2020, 249, 120054.	5.7	36
81	Nanomedicine Assembled by Coordinated Selenium–Platinum Complexes Can Selectively Induce Cytotoxicity in Cancer Cells by Targeting the Glutathione Antioxidant Defense System. ACS Biomaterials Science and Engineering, 2018, 4, 1954-1962.	2.6	35
82	Selenium-functionalized metal-organic frameworks as enzyme mimics. Nano Research, 2018, 11, 5761-5768.	5.8	35
83	Diselenide-Containing Polymeric Vesicles with Osmotic Pressure Response. ACS Macro Letters, 2019, 8, 629-633.	2.3	35
84	Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers. Polymer Reviews, 2020, 60, 114-143.	5. 3	34
85	Surface Molecular Imprinted Layer-by-Layer Film Attached to a Porous Membrane for Selective Filtration. Langmuir, 2011, 27, 11806-11812.	1.6	33
86	Controlling the Reactivity of the Se ${\rm i}$ 2Se Bond by the Supramolecular Chemistry of Cucurbituril. ChemPhysChem, 2015, 16, 523-527.	1.0	33
87	Selenium-containing nanoparticles synergistically enhance Pemetrexed&NK cell-based chemoimmunotherapy. Biomaterials, 2022, 280, 121321.	5.7	33
88	Selenoxide elimination manipulate the oxidative stress to improve the antitumor efficacy. Biomaterials, 2019, 225, 119514.	5.7	30
89	Wavelength-Controlled Light-Responsive Polymer Vesicle Based on Se–S Dynamic Chemistry. ACS Macro Letters, 2020, 9, 163-168.	2.3	30
90	Facile Reversible UV-Controlled and Fast Transition from Emulsion to Gel by Using a Photoresponsive Polymer with a Malachite Green Group. Langmuir, 2009, 25, 10134-10138.	1.6	29

#	Article	IF	CITATIONS
91	Cationâ€Selective Microcontact Printing Based on Surfaceâ€Molecularâ€Imprinted Layerâ€byâ€Layer Films. Advanced Materials, 2010, 22, 2689-2693.	11.1	29
92	Redox-responsive thermal sensitivity based on a selenium-containing small molecule. Chemical Communications, 2014, 50, 2585.	2.2	29
93	Telluriumâ€Containing Polymers: Towards Biomaterials and Optoelectronic Materials. ChemNanoMat, 2016, 2, 479-488.	1.5	29
94	Multi-hierarchical responsive polymers: stepwise oxidation of a selenium- and tellurium-containing block copolymer with sensitivity to both chemical and electrochemical stimuli. Polymer Chemistry, 2017, 8, 4520-4527.	1.9	29
95	Assembly of Carbon Nanotubes on Polymer Particles: Towards Rapid Shape Change by Nearâ€Infrared Light. Particle and Particle Systems Characterization, 2013, 30, 235-240.	1.2	27
96	Gamma radiation-responsive side-chain tellurium-containing polymer for cancer therapy. Materials Chemistry Frontiers, 2018, 2, 2109-2115.	3.2	27
97	Porous Multilayer-Coated PDMS Stamps for Protein Printing. Langmuir, 2009, 25, 13972-13977.	1.6	26
98	Selenium-Functionalized Graphene Oxide That Can Modulate the Balance of Reactive Oxygen Species. ACS Applied Materials & Diterfaces, 2017, 9, 21413-21421.	4.0	26
99	Bolaamphiphiles Bearing Bipyridine as Mesogenic Core: Rational Exploitation of Molecular Architectures for Controlled Self-Assembly. Langmuir, 2012, 28, 5023-5030.	1.6	24
100	CO/chemosensitization/antiangiogenesis synergistic therapy with H2O2-responsive diselenide-containing polymer. Biomaterials, 2021, 271, 120721.	5.7	24
101	Investigation into pH-Responsive Self-Assembled Monolayers of Acylated Anthranilate-Terminated Alkanethiol on a Gold Surface. Langmuir, 2006, 22, 3715-3720.	1.6	23
102	Exploring the difference of bonding strength between silver(<scp>i</scp>) and chalcogenides in block copolymer systems. Polymer Chemistry, 2020, 11, 7087-7093.	1.9	23
103	Versatile Stamps in Microcontact Printing: Transferring Inks by Molecular Recognition and from Ink Reservoirs. Chemistry - A European Journal, 2010, 16, 2342-2348.	1.7	22
104	Tuning the Resonant Frequency of Resonators Using Molecular Surface Self-assembly Approach. ACS Applied Materials & Samp; Interfaces, 2015, 7, 950-958.	4.0	22
105	Quantifying the Bonding Strength of Goldâ€Chalcogen Bonds in Block Copolymer Systems. Chemistry - an Asian Journal, 2019, 14, 1481-1486.	1.7	22
106	Selenium containing macrocycles: transformation between Se–N/Se–S/Se–Se bonds. Science China Chemistry, 2017, 60, 1191-1196.	4.2	19
107	Wavelengthâ€Controlled Dynamic Metathesis: A Lightâ€Driven Exchange Reaction between Disulfide and Diselenide Bonds. Angewandte Chemie, 2018, 130, 16664-16668.	1.6	19
108	Coordination responsive tellurium-containing multilayer film for controlled delivery. Chemical Communications, 2015, 51, 5520-5522.	2.2	18

#	Article	IF	CITATIONS
109	Diselenide-Linked Polymers under Sonication. ACS Macro Letters, 2020, 9, 1547-1551.	2.3	18
110	Functional polymer materials based on dynamic covalent chemistry. Science China Materials, 2022, 65, 2017-2034.	3.5	18
111	Selectively Erasable Multilayer Thin Film by Photoinduced Disassembly. Langmuir, 2010, 26, 9736-9741.	1.6	16
112	A ROS Eliminating Nanocomposite Film Fabricated from Diselenide ontaining Polymer Micelles. Particle and Particle Systems Characterization, 2013, 30, 1034-1038.	1.2	15
113	Treatment with a selenium-platinum compound induced T-cell acute lymphoblastic leukemia/lymphoma cells apoptosis through the mitochondrial signaling pathway. Oncology Letters, 2017, 13, 1702-1710.	0.8	15
114	Engineering Reversible Hydrogels for <scp>3D</scp> Cell Culture and Release Using Diselenide Catalyzed Fast Disulfide Formation. Chinese Journal of Chemistry, 2022, 40, 1578-1584.	2.6	15
115	Side-Chain Selenium-Grafted Polymers Combining Antiangiogenesis Treatment with Photodynamic Therapy and Chemotherapy. ACS Biomaterials Science and Engineering, 2021, 7, 3201-3208.	2.6	14
116	Selenium-Sulfur-Doped Carbon Dots with Thioredoxin Reductase Activity. CCS Chemistry, 2022, 4, 2239-2248.	4.6	14
117	Selenium-containing Coordinating Assemblies with Selective Anti-cancer Activityi¼šthe Control of Reactive Oxygen Species. Acta Chimica Sinica, 2014, 72, 1079.	0.5	14
118	Ab Initio Design of Graphene Block Enables Ultrasensitivity, Multimeterâ€Like Range Switchable Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1800531.	3.0	13
119	Selenium-containing supra-amphiphiles. Materials Chemistry Frontiers, 2019, 3, 2010-2017.	3.2	12
120	Water-Enhanced and Remote Self-Healing Elastomers in Various Harsh Environments. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27413-27420.	4.0	12
121	Swelling-induced 3D photopatterning on a diselenide-containing elastomer. Journal of Materials Chemistry C, 2019, 7, 10777-10782.	2.7	11
122	Diselenide–Pemetrexed Assemblies for Combined Cancer Immunoâ€, Radioâ€, and Chemotherapies. Angewandte Chemie, 2020, 132, 2722-2726.	1.6	11
123	Dendritic tellurides acting as antioxidants. Science Bulletin, 2006, 51, 2315-2321.	1.7	10
124	Macromolecular self-assembly and nanotechnology in China. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120305.	1.6	10
125	Laser-Induced Remote Healing of Stretchable Diselenide-Containing Conductive Composites. ACS Applied Materials & Diselenide Materials & D	4.0	10
126	Surface Modification Based on Diselenide Dynamic Chemistry: Towards Liquid Motion and Surface Bioconjugation. Angewandte Chemie, 2018, 131, 552.	1.6	9

#	ARTICLE	IF	CITATION
127	Fischesseriteâ€Inspired Recyclable Seâ€Polyurethanes for Selective Gold Extraction. Advanced Sustainable Systems, 2020, 4, 2000072.	2.7	9
128	Adaptive Seâ€Te Metathesis Controlled by Cucurbiturilâ€Based Hostâ€Guest Interaction. Chemistry - an Asian Journal, 2020, 15, 4321-4326.	1.7	8
129	Nanotechnology in the Olympic Winter Games and Beyond. ACS Nano, 2022, 16, 4981-4988.	7.3	7
130	"Reprocessable Thermosets†Synthesis and Characterization of Vitrimer in the Undergraduate Lab Course. Journal of Chemical Education, 2021, 98, 1429-1435.	1.1	6
131	Tellurium-containing nanoparticles for controlled delivery of cisplatin based on coordination interaction. RSC Advances, 2016, 6, 94033-94037.	1.7	5
132	Thermal- and Light-driven Metathesis Reactions Between Different Diselenides. Chemical Research in Chinese Universities, 2022, 38, 516-521.	1.3	5
133	When Dynamic Diselenide Bonds Meet Dynamic Imine Bonds in Polymeric Materials. Macromolecular Rapid Communications, 2022, 43, e2200083.	2.0	5
134	Copper-Selenocysteine Quantum Dots for NIR-II Photothermally Enhanced Chemodynamic Therapy. ACS Applied Bio Materials, 2022, 5, 1794-1803.	2.3	4
135	Preface: Biomaterials Science and Engineering in China Special Issue. ACS Biomaterials Science and Engineering, 2018, 4, 1926-1927.	2.6	O
136	Multi-functional supramolecular polymer produced from natural small molecules in a facile route. Science China Chemistry, 2019, 62, 155-156.	4.2	O