
Ya-Chun Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6303058/publications.pdf Version: 2024-02-01

ΥΛ-CHUN ΗΛΝ

#	Article	IF	CITATIONS
1	PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum–Mitochondria Contact and Mitophagy in Diabetic Nephropathy. Diabetes, 2022, 71, 1034-1050.	0.6	29
2	PRDM16 Regulating Adipocyte Transformation and Thermogenesis: A Promising Therapeutic Target for Obesity and Diabetes. Frontiers in Pharmacology, 2022, 13, 870250.	3.5	9
3	Mitochondrial DNA-dependent inflammation in kidney diseases. International Immunopharmacology, 2022, 107, 108637.	3.8	2
4	Effects of family history of diabetes on pancreatic β-cell function and diabetic ketoacidosis in newly diagnosed patients with type 2 diabetes: a cross-sectional study in China. BMJ Open, 2021, 11, e041072.	1.9	4
5	MAMs Protect Against Ectopic Fat Deposition and Lipid-Related Kidney Damage in DN Patients. Frontiers in Endocrinology, 2021, 12, 609580.	3.5	14
6	DsbA-L Ameliorates Renal Injury Through the AMPK/NLRP3 Inflammasome Signaling Pathway in Diabetic Nephropathy. Frontiers in Physiology, 2021, 12, 659751.	2.8	15
7	Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Current Medicinal Chemistry, 2021, 28, 1003-1024.	2.4	4
8	Effects of HIF-1α on renal fibrosis in cisplatin-induced chronic kidney disease. Clinical Science, 2021, 135, 1273-1288.	4.3	19
9	Targeting the NLRP3 Inflammasome in Diabetic Nephropathy. Current Medicinal Chemistry, 2021, 28, 8810-8824.	2.4	14
10	AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death and Disease, 2021, 12, 925.	6.3	77
11	Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death and Disease, 2021, 12, 1031.	6.3	37
12	Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Frontiers in Pharmacology, 2021, 12, 768100.	3.5	16
13	Family history of diabetes is associated with diabetic foot complications in type 2 diabetes. Scientific Reports, 2020, 10, 17056.	3.3	11
14	Mitochondria-Associated ER Membranes – The Origin Site of Autophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 595.	3.7	75
15	Mitochondria targeted peptide SS-31 prevent on cisplatin-induced acute kidney injury via regulating mitochondrial ROS-NLRP3 pathway. Biomedicine and Pharmacotherapy, 2020, 130, 110521.	5.6	54
16	Aristolochic acid induces renal fibrosis by arresting proximal tubular cells in G2/M phase mediated by HIFâ€lî±. FASEB Journal, 2020, 34, 12599-12614.	0.5	19
17	HIFâ€lα ameliorates tubular injury in diabetic nephropathy via HOâ€l–mediated control of mitochondrial dynamics. Cell Proliferation, 2020, 53, e12909.	5.3	74
18	AdipoRon Protects against Tubular Injury in Diabetic Nephropathy by Inhibiting Endoplasmic Reticulum Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	6

YA-CHUN HAN

#	Article	IF	CITATIONS
19	The Relationship Between Simple Renal Cysts and Renal Function in Patients With Type 2 Diabetes. Frontiers in Physiology, 2020, 11, 616167.	2.8	6
20	Mitochondria-Targeted Peptide SS31 Attenuates Renal Tubulointerstitial Injury via Inhibiting Mitochondrial Fission in Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	33
21	Association of Vitamin D Receptor Gene Polymorphism With the Risk of Nephrolithiasis. Therapeutic Apheresis and Dialysis, 2019, 23, 425-436.	0.9	4
22	DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine, 2019, 43, 607-619.	6.1	53
23	Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney International, 2019, 95, 880-895.	5.2	54
24	Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biology, 2018, 16, 32-46.	9.0	269
25	Effects of Omegaâ€3 Fatty Acids on Markers of Inflammation in Patients With Chronic Kidney Disease: A Controversial Issue. Therapeutic Apheresis and Dialysis, 2018, 22, 124-132.	0.9	19
26	The Susceptibility Genes in Diabetic Nephropathy. Kidney Diseases (Basel, Switzerland), 2018, 4, 226-237.	2.5	51
27	Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Current Medicinal Chemistry, 2018, 25, 3256-3271.	2.4	64
28	Normoalbuminuric diabetic kidney disease. Frontiers of Medicine, 2017, 11, 310-318.	3.4	85
29	Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox Biology, 2017, 13, 482-497.	9.0	43
30	Red cell distribution width as a significant indicator of medication and prognosis in type 2 diabetic patients. Scientific Reports, 2017, 7, 2709.	3.3	21
31	Mitochondria: A Novel Therapeutic Target in Diabetic Nephropathy. Current Medicinal Chemistry, 2017, 24, 3185-3202.	2.4	58
32	p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Scientific Reports, 2016, 6, 29302.	3.3	36