
Francesca Kerton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6302956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chemistry, 2006, 8, 853.	4.6	285
2	Synthesis of cyclic carbonates from CO ₂ and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures. Catalysis Science and Technology, 2014, 4, 1513-1528.	2.1	254
3	Direct conversion of chitin into a N-containing furan derivative. Green Chemistry, 2014, 16, 2204-2212.	4.6	220
4	Green chemistry and the ocean-based biorefinery. Green Chemistry, 2013, 15, 860.	4.6	214
5	Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chemistry, 2012, 14, 1480.	4.6	161
6	Simple copper/TEMPO catalyzed aerobic dehydrogenation of benzylic amines and anilines. Organic and Biomolecular Chemistry, 2012, 10, 1618.	1.5	141
7	Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-d-glucosamine. RSC Advances, 2012, 2, 4642.	1.7	110
8	A Simple Oneâ€Pot Dehydration Process to Convert <i>N</i> â€acetylâ€ <scp>D</scp> â€glucosamine into a Nitrogenâ€Containing Compound, 3â€acetamidoâ€5â€acetylfuran. ChemSusChem, 2012, 5, 1767-1772.	3.6	104
9	Conversion of chitin and N-acetyl- <scp>d</scp> -glucosamine into a N-containing furan derivative in ionic liquids. RSC Advances, 2015, 5, 20073-20080.	1.7	100
10	A high-throughput approach to lanthanide complexes and their rapid screening in the ring opening polymerisation of caprolactone. Dalton Transactions, 2004, , 2237.	1.6	98
11	Triarylborane-Catalyzed Formation of Cyclic Organic Carbonates and Polycarbonates. ACS Catalysis, 2019, 9, 1799-1809.	5.5	90
12	Aluminium coordination complexes in copolymerization reactions of carbon dioxide and epoxides. Dalton Transactions, 2013, 42, 8998.	1.6	79
13	Mechanochemical Amorphization of α-Chitin and Conversion into Oligomers of <i>N</i> -Acetyl- <scp>d</scp> -glucosamine. ACS Sustainable Chemistry and Engineering, 2018, 6, 1662-1669.	3.2	79
14	Carbonâ^'Carbon Bond Formation Using Yttrium(III) and the Lanthanide Elements. Organometallics, 2001, 20, 1387-1396.	1.1	72
15	Room temperature aerobic oxidation of alcohols using CuBr2 with TEMPO and a tetradentate polymer based pyridyl-imine ligand. Applied Catalysis A: General, 2012, 413-414, 332-339.	2.2	71
16	The Elusive Titanocene. Journal of the American Chemical Society, 1998, 120, 10264-10265.	6.6	68
17	Alkali aminoether-phenolate complexes: synthesis, structural characterization and evidence for an activated monomer ROP mechanism. Dalton Transactions, 2013, 42, 9361.	1.6	68
18	Iron amino-bis(phenolate) complexes for the formation of organic carbonates from CO ₂ and oxiranes. Catalysis Science and Technology, 2016, 6, 5364-5373.	2.1	63

#	Article	IF	CITATIONS
19	Lanthanide chloride complexes of amine-bis(phenolate) ligands and their reactivity in the ring-opening polymerization of ε-caprolactone. Dalton Transactions, 2008, , 3592.	1.6	59
20	Aluminum Methyl and Chloro Complexes Bearing Monoanionic Aminephenolate Ligands: Synthesis, Characterization, and Use in Polymerizations. Organometallics, 2012, 31, 8145-8158.	1.1	56
21	Solubility of bio-sourced feedstocks in â€~green' solvents. Green Chemistry, 2010, 12, 1648.	4.6	54
22	Ring-opening polymerization of $\hat{I}\mu$ -caprolactone by lithium piperazinyl-aminephenolate complexes: synthesis, characterization and kinetic studies. Dalton Transactions, 2012, 41, 6651.	1.6	53
23	Dinuclear π Complexes of Yttrium and Lutetium with Sandwiched Naphthalene and Anthracene Ligands: Evidence for Rapid Intramolecular Inter-Ring Rearrangements. Angewandte Chemie - International Edition, 2000, 39, 767-770.	7.2	51
24	Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 2018, 8, 31618-31627.	1.7	49
25	Accelerated syntheses of amine-bis(phenol) ligands in polyethylene glycol or "on water―under microwave irradiation. Canadian Journal of Chemistry, 2008, 86, 435-443.	0.6	48
26	Synthesis and structure of mono-, bi- and trimetallic amine-bis(phenolate) cobalt(ii) complexes. Dalton Transactions, 2010, 39, 5462.	1.6	46
27	Coupling of carbon dioxide with neat propylene oxide catalyzed by aminebisphenolato cobalt(II)/(III) complexes and ionic co-catalysts. Catalysis Communications, 2012, 18, 165-167.	1.6	43
28	Ring-opening polymerization of rac-lactide mediated by tetrametallic lithium and sodium diamino-bis(phenolate) complexes. Dalton Transactions, 2015, 44, 20216-20231.	1.6	43
29	Oxidized Biochar as a Simple, Renewable Catalyst for the Production of Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem, 2019, 11, 4089-4095.	1.8	43
30	Delicious not siliceous: expanded carbohydrates as renewable separation media for column chromatography. Chemical Communications, 2005, , 2903.	2.2	42
31	Synthesis of Pd nanocrystals in phosphonium ionic liquids without any external reducing agents. Green Chemistry, 2011, 13, 681.	4.6	39
32	Neodymium borohydride complexes supported by diamino-bis(phenoxide) ligands: diversity of synthetic and structural chemistry, and catalytic activity in ring-opening polymerization of cyclic esters. New Journal of Chemistry, 2011, 35, 204-212.	1.4	38
33	Zinc Complexes of Piperazinylâ€Đerived Aminephenolate Ligands: Synthesis, Characterization and Ring–Opening Polymerization Activity. European Journal of Inorganic Chemistry, 2011, 2011, 5347-5359.	1.0	38
34	Iron Complexes for Cyclic Carbonate and Polycarbonate Formation: Selectivity Control from Ligand Design and Metal-Center Geometry. Inorganic Chemistry, 2019, 58, 11231-11240.	1.9	37
35	First example of a conducting polymer synthesised in supercritical fluids. Journal of Materials Chemistry, 1997, 7, 1965-1966.	6.7	34
36	Formation and catalytic activity of Pd nanoparticles on silica in supercritical CO2. Green Chemistry, 2006. 8. 965.	4.6	34

#	Article	IF	CITATIONS
37	Ring-opening polymerization of cyclohexene oxide using aluminum amine–phenolate complexes. Dalton Transactions, 2015, 44, 12098-12102.	1.6	34
38	Ring-opening polymerizations and copolymerizations of epoxides using aluminum- and boron-centered catalysts. European Polymer Journal, 2019, 120, 109202.	2.6	34
39	Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue. Sustainable Chemistry and Pharmacy, 2021, 21, 100421.	1.6	33
40	Biocatalytic esterification of lavandulol in supercritical carbon dioxide using acetic acid as the acyl donor. Enzyme and Microbial Technology, 2006, 39, 621-625.	1.6	32
41	Dimerisation versus polymerisation: Affects of donor position in isomeric dilithium diamine-bis(phenolate) complexes. Inorganica Chimica Acta, 2006, 359, 2819-2825.	1.2	31
42	Formation of a Renewable Amine and an Alcohol via Transformations of 3-Acetamido-5-acetylfuran. ACS Sustainable Chemistry and Engineering, 2017, 5, 4916-4922.	3.2	31
43	Coupling Reactions of Carbon Dioxide with Epoxides Catalyzed by Vanadium Aminophenolate Complexes. ChemSusChem, 2017, 10, 1249-1254.	3.6	31
44	Combined Experimental and Computational Studies on the Physical and Chemical Properties of the Renewable Amide, 3â€Acetamidoâ€5â€acetylfuran. ChemPhysChem, 2014, 15, 4087-4094.	1.0	28
45	Poly(dimethylsiloxane)-Derived Phosphine and Phosphinite Ligands:Â Synthesis, Characterization, Solubility in Supercritical Carbon Dioxide, and Sequestration on Silica. Organometallics, 2004, 23, 5176-5181.	1.1	24
46	Characterization of Oxo-Bridged Iron Amino-bis(phenolate) Complexes Formed Intentionally or in Situ: Mechanistic Insight into Epoxide Deoxygenation during the Coupling of CO ₂ and Epoxides. Inorganic Chemistry, 2018, 57, 13494-13504.	1.9	23
47	A Study of Ligand Coordination at Lanthanide and Group 4 Metal Centers by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Organometallics, 2009, 28, 837-842.	1.1	22
48	Dehydration of Benzyl Alcohols in Phosphonium Ionic Liquids: Synthesis of Ethers and Alkenes. Advanced Synthesis and Catalysis, 2011, 353, 3178-3186.	2.1	20
49	Morpholine-Stabilized Cationic Aluminum Complexes and Their Reactivity in Ring-Opening Polymerization of ε-Caprolactone. Inorganic Chemistry, 2019, 58, 5253-5264.	1.9	20
50	The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry and Engineering Research. ACS Sustainable Chemistry and Engineering, 2021, 9, 8015-8017.	3.2	20
51	Iron-catalyzed reactions of CO2 and epoxides to yield cyclic and polycarbonates. Polymer Journal, 2021, 53, 29-46.	1.3	19
52	Vanadium Aminophenolate Complexes and Their Catalytic Activity in Aerobic and H2O2â€Mediated Oxidation Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 3123-3130.	1.0	18
53	Borane catalyzed polymerization and depolymerization reactions controlled by Lewis acidic strength. Chemical Communications, 2021, 57, 7320-7322.	2.2	18
54	Synthesis of amine-phenol ligands in water – a simple demonstration of a hydrophobic effect. Green Chemistry Letters and Reviews, 2007, 1, 31-35.	2.1	17

#	Article	IF	CITATIONS
55	Hard to Soft: Biogenic Absorbent Sponge-like Material from Waste Mussel Shells. Matter, 2020, 3, 2029-2041.	5.0	15
56	Catalytic dehydrative etherification and chlorination of benzyl alcohols in ionic liquids. Chemical Communications, 2009, , 5171.	2.2	14
57	Structural characterization of a tetrametallic diamine-bis(phenolate) complex of lithium and synthesis of a related bismuth complex. Polyhedron, 2015, 102, 60-68.	1.0	12
58	Enzymatic processing of mussel shells to produce biorenewable calcium carbonate in seawater. Green Chemistry, 2018, 20, 2913-2920.	4.6	12
59	Structural variations in the coordination chemistry of amine-bis(phenolate) cobalt(II/III) complexes. Polyhedron, 2012, 46, 53-65.	1.0	11
60	Copolymerization of CHO/CO ₂ catalyzed by a series of aluminum amino-phenolate complexes and insights into structure–activity relationships. Dalton Transactions, 2020, 49, 6884-6895.	1.6	11
61	Wealth from waste: blue mussels (<i>Mylitus edulis</i>) offer up a sustainable source of natural and synthetic nacre. Green Chemistry, 2019, 21, 3920-3929.	4.6	10
62	Mechanistic studies on the formation of 5-hydroxymethylfurfural from the sugars fructose and glucose. Pure and Applied Chemistry, 2021, 93, 463-478.	0.9	10
63	Green Solvents for the Liquid-Phase Exfoliation of Biochars. ACS Sustainable Chemistry and Engineering, 2021, 9, 9114-9125.	3.2	10
64	Coordination Chemistry of α-ω-Bis(pyridylimine) Ligands Containing Flexible Linkers with Copper(I). European Journal of Inorganic Chemistry, 2012, 2012, 1773-1782.	1.0	9
65	Synthesis of a Renewable, Wasteâ€Đerived Nonisocyanate Polyurethane from Fish Processing Discards and Cashew Nutshellâ€Đerived Amines. Macromolecular Rapid Communications, 2021, 42, e2000339.	2.0	8
66	Ring losing Metathesis of Aliphatic Ethers and Esterification of Terpene Alcohols Catalyzed by Functionalized Biochar. European Journal of Organic Chemistry, 2021, 2021, 6052-6056.	1.2	7
67	Biochar as a sustainable and renewable additive for the production of Poly(Îμ-caprolactone) composites. Sustainable Chemistry and Pharmacy, 2022, 25, 100586.	1.6	7
68	Synthesis and alkyne coordination chemistry of thiacycloalkynes. Journal of Organometallic Chemistry, 1996, 519, 177-184.	0.8	6
69	Functionalized polycarbonates via triphenylborane catalyzed polymerization-hydrosilylation. RSC Advances, 2019, 9, 26542-26546.	1.7	6
70	Single Crystal Structural Characterization of Trichlorotetrapyridylbismuth(III) and Its Pyridine Solvate. Journal of Chemical Crystallography, 2014, 44, 108-114.	0.5	5
71	Halodehydroxylation of alcohols to yield benzylic and alkyl halides in ionic liquids. Sustainable Chemical Processes, 2015, 3, .	2.3	5
72	Reprint of Structural characterization of a tetrametallic diamine-bis(phenolate) complex of lithium and synthesis of a related bismuth complex. Polyhedron, 2016, 108, 50-58.	1.0	5

#	Article	IF	CITATIONS
73	Coordination of d10-metal cations by thiacycloalkynes. Polyhedron, 1997, 16, 1529-1534.	1.0	4
74	Renewable resources from the oceans: Adding value to the by-products of the aquaculture and fishing industries. , 2014, , .		4
75	Marine-based green chemistry. Green Chemistry, 2022, 24, 2265-2266.	4.6	4
76	Women in Green Chemistry and Engineering: Agents of Change Toward the Achievement of a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2022, 10, 2859-2862.	3.2	3
77	Construction of supramolecular laccase enzymes and understanding of catalytic dye degradation using multispectral and molecular docking approaches. Reaction Chemistry and Engineering, 2021, 6, 1940-1949.	1.9	2
78	Dissolution studies of α-chitin fibers in freezing NaOH(aq). Cellulose, 2021, 28, 1885-1891.	2.4	1
79	Synthesis of amino-phenolate manganese complexes and their catalytic activity in carbon dioxide activation and oxidation reactions. Canadian Journal of Chemistry, 2021, 99, 202-208.	0.6	1
80	<i>Pure and Applied Chemistry</i> Chemical Research Applied to World Needs (CHEMRAWN) issue. Pure and Applied Chemistry, 2021, 93, 407-407.	0.9	0