
Mettine H A Bos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6302631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The molecular basis of factor V and VIII procofactor activation. Journal of Thrombosis and Haemostasis, 2009, 7, 1951-1961.	3.8	80
2	High levels of coagulation factors and venous thrombosis risk: strongest association for factorÂVIII and von Willebrand factor. Journal of Thrombosis and Haemostasis, 2019, 17, 99-109.	3.8	77
3	Cirrhosis patients have a coagulopathy that is associated with decreased clot formation capacity. Journal of Thrombosis and Haemostasis, 2014, 12, 1647-1657.	3.8	60
4	A Bipartite Autoinhibitory Region within the B-domain Suppresses Function in Factor V. Journal of Biological Chemistry, 2012, 287, 26342-26351.	3.4	51
5	Acyl-coenzyme A: Cholesterol acyltransferase inhibitor, avasimibe, stimulates bile acid synthesis and cholesterol 7?-hydroxylase in cultured rat hepatocytes andin vivo in the rat. Hepatology, 1999, 30, 491-500.	7.3	47
6	Venom factor V from the common brown snake escapes hemostatic regulation through procoagulant adaptations. Blood, 2009, 114, 686-692.	1.4	40
7	Lipid levels and risk of venous thrombosis: results from the MEGA-study. European Journal of Epidemiology, 2017, 32, 669-681.	5.7	35
8	Blood coagulation factor Va's key interactive residues and regions for prothrombinase assembly and prothrombin binding. Journal of Thrombosis and Haemostasis, 2019, 17, 1229-1239.	3.8	33
9	Coagulotoxic effects by brown snake (Pseudonaja) and taipan (Oxyuranus) venoms, and the efficacy of a new antivenom. Toxicology in Vitro, 2019, 58, 97-109.	2.4	30
10	Basal but divergent: Clinical implications of differential coagulotoxicity in a clade of Asian vipers. Toxicology in Vitro, 2019, 58, 195-206.	2.4	30
11	Expression of biologically active human clotting factor IX in <i>Drosophila</i> S2 cells: γâ€carboxylation of a human vitamin Kâ€dependent protein by the insect enzyme. Biotechnology Progress, 2012, 28, 45-51.	2.6	29
12	Coagulopathy after hemorrhagic traumatic brain injury, an observational study of the incidence and prognosis. Acta Neurochirurgica, 2020, 162, 329-336.	1.7	29
13	Restoring the Procofactor State of Factor Va-like Variants by Complementation with B-domain Peptides. Journal of Biological Chemistry, 2013, 288, 30151-30160.	3.4	28
14	Engineered factor Xa variants retain procoagulant activity independent of direct factor Xa inhibitors. Nature Communications, 2017, 8, 528.	12.8	27
15	Clinical implications of differential antivenom efficacy in neutralising coagulotoxicity produced by venoms from species within the arboreal viperid snake genus Trimeresurus. Toxicology Letters, 2019, 316, 35-48.	0.8	27
16	Habu coagulotoxicity: Clinical implications of the functional diversification of Protobothrops snake venoms upon blood clotting factors. Toxicology in Vitro, 2019, 55, 62-74.	2.4	27
17	Rosuvastatin use reduces thrombin generation potential in patients with venous thromboembolism: a randomized controlled trial. Journal of Thrombosis and Haemostasis, 2019, 17, 319-328.	3.8	25
18	Does activated protein C-resistant factor V contribute to thrombin generation in hemophilic plasma?. Journal of Thrombosis and Haemostasis, 2005, 3, 522-530.	3.8	24

Mettine H A Bos

#	Article	IF	CITATIONS
19	Clinical implications of coagulotoxic variations in Mamushi (Viperidae: Gloydius) snake venoms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 225, 108567.	2.6	22
20	Procoagulant Adaptation of a Blood Coagulation Prothrombinase-like Enzyme Complex in Australian Elapid Venom. Toxins, 2010, 2, 1554-1567.	3.4	20
21	Objectives and Design of BLEEDS: A Cohort Study to Identify New Risk Factors and Predictors for Major Bleeding during Treatment with Vitamin K Antagonists. PLoS ONE, 2016, 11, e0164485.	2.5	16
22	Blood coagulation factors V and VIII: Molecular Mechanisms of Procofactor Activation. Journal of Coagulation Disorders, 2010, 2, 19-27.	0.0	14
23	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2019 Congress in Melbourne, Australia. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 431-497.	2.3	11
24	Functional expression of the human coagulation factor IX using heterologous signal peptide and propeptide sequences in mammalian cell line. Biotechnology Letters, 2015, 37, 1773-1781.	2.2	10
25	Elevated coagulation factor levels affect the tissue factor-threshold in thrombin generation. Thrombosis Research, 2018, 172, 104-109.	1.7	10
26	Factor V levels and risk of venous thrombosis: The MEGA case ontrol study. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 320-326.	2.3	10
27	Pharmacological Characterisation of Pseudocerastes and Eristicophis Viper Venoms Reveal Anticancer (Melanoma) Properties and a Potentially Novel Mode of Fibrinogenolysis. International Journal of Molecular Sciences, 2021, 22, 6896.	4.1	9
28	Efficient expression of functional human coagulation factor IX in stably-transfected Drosophila melanogaster S2 cells; comparison with the mammalian CHO system. Biotechnology Letters, 2016, 38, 1691-1698.	2.2	8
29	Reversal Agents for the Direct Factor Xa Inhibitors: Biochemical Mechanisms of Current and Newly Emerging Therapies. Seminars in Thrombosis and Hemostasis, 2020, 46, 986-998.	2.7	7
30	Evolutionary Adaptations in Pseudonaja Textilis Venom Factor X Induce Zymogen Activity and Resistance to the Intrinsic Tenase Complex. Thrombosis and Haemostasis, 2020, 120, 1512-1523.	3.4	5
31	Elevated anti-human factor Xa activity in rabbit and rodent plasma: Implications for preclinical assessment of human factor X in animal models of hemostasis. Thrombosis Research, 2021, 198, 154-162.	1.7	4
32	Major bleeding during oral anticoagulant therapy associated with factor V activation by factor Xa. Journal of Thrombosis and Haemostasis, 2022, 20, 328-338.	3.8	4
33	Evolutionary conservation of the tissue factor disulfide bonds and identification of a possible oxidoreductase binding motif. Journal of Thrombosis and Haemostasis, 2012, 10, 161-162.	3.8	3
34	Improved activity and expression of recombinant human factor IX by propeptide engineering. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 653-660.	2.0	3
35	Enhanced functional recombinant factor IX production by human embryonic kidney cells engineered to overexpress VKORC1. Biotechnology Progress, 2020, 36, e2938.	2.6	3
36	Association Between Hepatic Triglyceride Content and Coagulation Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 3004-3014.	2.4	3

Mettine H A Bos

#	Article	IF	CITATIONS
37	Vitamin K therapy to reduce bleeding. Blood, 2020, 136, 780-782.	1.4	2
38	Evolutionary Adaptation of Factor V from the Venom of the Common Brown Snake into a Potent Procoagulant. Blood, 2008, 112, 586-586.	1.4	2
39	Lower-leg injury and knee arthroscopy have distinct effects on coagulation. Blood Advances, 2022, 6, 5232-5243.	5.2	2
40	Response: Response to "Clinical relevance of brown snake (Pseudonaja spp) factor V escaping hemostatic regulation― Blood, 2009, 114, 2563-2564.	1.4	1
41	Functional implications of the unique disulfide bond in venom factor V from the Australian common brown snakePseudonaja textilis. Toxin Reviews, 2014, 33, 37-41.	3.4	1
42	Snakebites and microvesicles: Popping bubbles. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 156-157.	2.3	1
43	High Soluble Thrombomodulin Is Associated with an Increased Risk of Major Bleeding during Treatment with Oral Anticoagulants: A Case–Cohort Study. Thrombosis and Haemostasis, 2021, 121, 070-075.	3.4	1
44	Structureâ€function of anticoagulant TIXâ€5, the inhibitor of factor Xaâ€mediated FV activation. Journal of Thrombosis and Haemostasis, 2021, 19, 1697-1708.	3.8	1
45	Destabilization of the Factor V B-Domain Results in Procofactor Activation Blood, 2006, 108, 198-198.	1.4	1
46	Evolutionary adaptation of the $\hat{I}^{3} \widehat{e} \widehat{e}$ arboxyglutamic acid domain in blood coagulation factor X in the Serpentes suborder. FASEB Journal, 2021, 35, .	0.5	0
47	ptFVa (<i>Pseudonaja Textilis</i> Venom-Derived Factor Va) Retains Structural Integrity Following Proteolysis by Activated Protein C. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2263-2276.	2.4	0
48	Venom-Derived Factor V from the Common Brown Snake P. Textilis Is Expressed as a Constitutively Active Cofactor Blood, 2007, 110, 1765-1765.	1.4	0
49	Conserved Structural Motifs Cooperate to Maintain Blood Coagulation Factor V in An Inactive Procofactor State Blood, 2009, 114, 850-850.	1.4	Ο
50	Molecular Mechanism Underlying the Need for Three Cleavage Sites within the B-Domain to Activate Factor V by Thrombin. Blood, 2010, 116, 2219-2219.	1.4	0
51	Modulating the Factor V Procofactor to Cofactor Transition Using Recombinant B-Domain Fragments. Blood, 2011, 118, 376-376.	1.4	Ο
52	Engineered Factor Xa Variants Retain Procoagulant Activity Independent of Direct Factor Xa-Inhibitors. Blood, 2015, 126, 126-126.	1.4	0
53	Evaluation of a Blood Coagulation Factor IX Variant That Functions Independently of Factor VIII As an Alternative Treatment for Hemophilia A. Blood, 2019, 134, 1110-1110.	1.4	0
54	Effect of prepropeptide replacement on \hat{I}^3 -carboxylation and activity of recombinant coagulation factor IX. Biotechnology Letters, 0, , .	2.2	0