
Angelos Vourlidas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6302531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations. Space Weather, 2022, 20, e2020SW002554.	3.7	6
2	Parker Solar Probe Imaging of the Night Side of Venus. Geophysical Research Letters, 2022, 49, .	4.0	12
3	Evidence of a complex structure within the 2013 August 19 coronal mass ejection. Astronomy and Astrophysics, 2022, 662, A45.	5.1	9
4	On Modeling ICME Cross-Sections as Static MHD Columns. Solar Physics, 2022, 297, .	2.5	2
5	The Hyper-inflation Stage in the Coronal Mass Ejection Formation: A Missing Link That Connects Flares, Coronal Mass Ejections, and Shocks in the Low Corona. Astrophysical Journal, 2022, 931, 141.	4.5	4
6	PSP/WISPR Observations of Dust Density Depletion near the Sun. II. New Insights from within the Depletion Zone. Astrophysical Journal, 2022, 932, 75.	4.5	8
7	Timeâ€ofâ€Arrival of Coronal Mass Ejections: A Twoâ€Phase Kinematics Approach Based on Heliospheric Imaging Observations. Space Weather, 2022, 20, .	3.7	3
8	Propagating Conditions and the Time of ICME Arrival: A Comparison of the Effective Acceleration Model with ENLIL and DBEM Models. Solar Physics, 2021, 296, 1.	2.5	14
9	Assessing the Projection Correction of Coronal Mass Ejection Speeds on Timeâ€ofâ€Arrival Prediction Performance Using the Effective Acceleration Model. Space Weather, 2021, 19, e2020SW002617.	3.7	14
10	Plasma Heating Induced by Tadpole-like Downflows in the Flaring Solar Corona. Innovation(China), 2021, 2, 100083.	9.1	22
11	On the Rigidity Spectrum of Cosmic-Ray Variations within Propagating Interplanetary Disturbances: Neutron Monitor and SOHO/EPHIN Observations at â^¼1–10 GV. Astrophysical Journal, 2021, 908, 5.	4.5	9
12	Addressing Gaps in Space Weather Operations and Understanding With Small Satellites. Space Weather, 2021, 19, e2020SW002566.	3.7	5
13	Interpretation of Streaks from the Wide-Field Imager for Parker Solar Probe (WISPR). , 2021, , .		0
14	Validation of Global EUV Wave MHD Simulations and Observational Techniques. Astrophysical Journal, 2021, 911, 118.	4.5	23
15	Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST). Solar Physics, 2021, 296, 1.	2.5	65
16	Improving the Medium-Term Forecasting of Space Weather: A Big Picture Review From a Solar Observer's Perspective. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	4
17	Evolution of a streamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory. Astronomy and Astrophysics, 2021, 650, A32.	5.1	12
18	An Observational Study of a "Rosetta Stone―Solar Eruption. Astrophysical Journal Letters, 2021, 914, L8.	8.3	13

#	Article	IF	CITATIONS
19	Parker Solar Probe observations of He/H abundance variations in SEP events inside 0.5 au. Astronomy and Astrophysics, 2021, 650, A23.	5.1	13
20	Tracking solar wind flows from rapidly varying viewpoints by the Wide-field Imager for Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A30.	5.1	8
21	In-flight Calibration and Data Reduction for the WISPR Instrument On Board the PSP Mission. Solar Physics, 2021, 296, 1.	2.5	12
22	Coronal mass ejections observed by heliospheric imagers at 0.2 and 1 au. Astronomy and Astrophysics, 2021, 650, A31.	5.1	9
23	PSP/IS⊙IS observations of the 29 November 2020 solar energetic particle event. Astronomy and Astrophysics, 2021, 656, A29.	5.1	15
24	Connecting the Low to the High Corona: A Method to Isolate Transients in STEREO/COR1 Images. Astrophysical Journal, 2021, 919, 98.	4.5	8
25	On the Quasiâ€Three Dimensional Configuration of Magnetic Clouds. Geophysical Research Letters, 2021, 48, e2020GL090630.	4.0	6
26	Internal Structure of the 2019 April 2 CME. Astrophysical Journal, 2021, 922, 234.	4.5	7
27	Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories. Astronomy and Astrophysics, 2020, 642, A4.	5.1	35
28	When do solar erupting hot magnetic flux ropes form?. Astronomy and Astrophysics, 2020, 642, A109.	5.1	17
29	Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections. Space Science Reviews, 2020, 216, 1.	8.1	77
30	Radio Observations of Coronal Mass Ejection Initiation and Development in the Low Solar Corona. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	13
31	On the Expansion Speed of Coronal Mass Ejections: Implications for Self-Similar Evolution. Solar Physics, 2020, 295, 1.	2.5	16
32	Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe. Solar Physics, 2020, 295, 1.	2.5	12
33	Predicting the Time of Arrival of Coronal Mass Ejections at Earth From Heliospheric Imaging Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027885.	2.4	5
34	Radio Observations of Coronal Mass Ejections: Space Weather Aspects. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	19
35	Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles. Solar Physics, 2020, 295, 1.	2.5	8
36	Modeling the Early Evolution of a Slow Coronal Mass Ejection Imaged by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 72.	7.7	21

#	Article	IF	CITATIONS
37	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
38	Detailed Imaging of Coronal Rays with the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 60.	7.7	21
39	Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 65.	7.7	23
40	Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 35.	7.7	27
41	Estimation of the Physical Parameters of a CME at High Coronal Heights Using Low-frequency Radio Observations. Astrophysical Journal, 2020, 893, 28.	4.5	30
42	The Solar Orbiter Heliospheric Imager (SoloHI). Astronomy and Astrophysics, 2020, 642, A13.	5.1	48
43	Models and data analysis tools for the Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A2.	5.1	53
44	Coordination within the remote sensing payload on the Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A6.	5.1	27
45	The Solar Orbiter Science Activity Plan. Astronomy and Astrophysics, 2020, 642, A3.	5.1	67
46	How Does Magnetic Reconnection Drive the Early-stage Evolution of Coronal Mass Ejections?. Astrophysical Journal, 2020, 893, 141.	4.5	22
47	The Solar Origin of Particle Events Measured by Parker Solar Probe. Astrophysical Journal, 2020, 899, 107.	4.5	7
48	The Coronal Mass Ejection Visibility Function of Modern Coronagraphs. Astrophysical Journal, 2020, 900, 161.	4.5	3
49	Simulating White Light Images of Coronal Structures for WISPR/Parker Solar Probe: Effects of the Near-Sun Elliptical Orbit. Solar Physics, 2019, 294, 1.	2.5	22
50	Unraveling the Internal Magnetic Field Structure of the Earth-directed Interplanetary Coronal Mass Ejections During 1995 – 2015. Solar Physics, 2019, 294, 1.	2.5	44
51	Element Abundances: A New Diagnostic for the Solar Wind. Astrophysical Journal, 2019, 879, 124.	4.5	62
52	Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe. Solar Physics, 2019, 294, 1.	2.5	5
53	Connecting the Properties of Coronal Shock Waves with Those of Solar Energetic Particles. Astrophysical Journal, 2019, 876, 80.	4.5	67
54	Predicting the geoeffective properties of coronal mass ejections: current status, open issues and path forward. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180096.	3.4	45

#	Article	IF	CITATIONS
55	Solar energetic particles in the inner heliosphere: status and open questions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180100.	3.4	35
56	Combined geometrical modelling and white-light mass determination of coronal mass ejections. Astronomy and Astrophysics, 2019, 623, A139.	5.1	14
57	A Comparative Study of 2017 July and 2012 July Complex Eruptions: Are Solar Superstorms "Perfect Storms―in Nature?. Astrophysical Journal, Supplement Series, 2019, 241, 15.	7.7	23
58	Comparing extrapolations of the coronal magnetic field structure at 2.5 <i>R</i> _⊙ with multi-viewpoint coronagraphic observations. Astronomy and Astrophysics, 2019, 627, A9.	5.1	7
59	Lyα science from the LST aboard the ASO-S mission. Research in Astronomy and Astrophysics, 2019, 19, 168.	1.7	8
60	Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature, 2019, 576, 232-236.	27.8	84
61	Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and Its Heating Evolution with VAULT2.0 and IRIS Observations. Astrophysical Journal, 2018, 857, 73.	4.5	18
62	Information Theoretic Approach to Discovering Causalities in the Solar Cycle. Astrophysical Journal, 2018, 854, 85.	4.5	22
63	EUV Irradiance Inputs to Thermospheric Density Models: Open Issues and Path Forward. Space Weather, 2018, 16, 5-15.	3.7	15
64	Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. Solar Physics, 2018, 293, 1.	2.5	115
65	Evolution of CME Mass in the Corona. Solar Physics, 2018, 293, 1.	2.5	20
66	The density compression ratio of shock fronts associated with coronal mass ejections. Journal of Space Weather and Space Climate, 2018, 8, A08.	3.3	34
67	Solar Physics From Unconventional Viewpoints. Frontiers in Astronomy and Space Sciences, 2018, 5, .	2.8	22
68	The Highly Structured Outer Solar Corona. Astrophysical Journal, 2018, 862, 18.	4.5	101
69	Streamer-blowout Coronal Mass Ejections: Their Properties and Relation to the Coronal Magnetic Field Structure. Astrophysical Journal, 2018, 861, 103.	4.5	47
70	Elliptic-cylindrical Analytical Flux Rope Model for Magnetic Clouds. Astrophysical Journal, 2018, 861, 139.	4.5	47
71	How Reliable Are the Properties of Coronal Mass Ejections Measured from a Single Viewpoint?. Astrophysical Journal, 2018, 863, 57.	4.5	27
72	Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind		1

Observations. , 2018, , 27-57.

1

#	Article	IF	CITATIONS
73	STRUCTURE, PROPAGATION, AND EXPANSION OF A CME-DRIVEN SHOCK IN THE HELIOSPHERE: A REVISIT OF THE 2012 JULY 23 EXTREME STORM. Astrophysical Journal, 2017, 834, 158.	4.5	24
74	CHROMOSPHERE TO 1 au SIMULATION OF THE 2011 MARCH 7th EVENT: A COMPREHENSIVE STUDY OF CORONAL MASS EJECTION PROPAGATION. Astrophysical Journal, 2017, 834, 172.	4.5	68
75	Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections. Astrophysical Journal, 2017, 836, 246.	4.5	32
76	Multi-viewpoint Coronal Mass Ejection Catalog Based on STEREO COR2 Observations. Astrophysical Journal, 2017, 838, 141.	4.5	77
77	Understanding the Physical Nature of Coronal "EIT Waves― Solar Physics, 2017, 292, 7.	2.5	67
78	CME Dynamics Using STEREO and LASCO Observations: The Relative Importance of Lorentz Forces and Solar Wind Drag. Solar Physics, 2017, 292, 1.	2.5	40
79	Observation of an Extremely Large-Density Heliospheric Plasma Sheet Compressed by an Interplanetary Shock at 1 AU. Solar Physics, 2017, 292, 1.	2.5	9
80	Magnetic Flux Rope Shredding By a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions. Astrophysical Journal, 2017, 843, 93.	4.5	16
81	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 2. Geomagnetic response. Space Weather, 2017, 15, 441-461.	3.7	24
82	Is There a CME Rate Floor? CME and Magnetic Flux Values for the Last Four Solar Cycle Minima. Astrophysical Journal, 2017, 851, 142.	4.5	11
83	Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9–20 R _⊙ . Astrophysical Journal, 2017, 850, 129.	4.5	10
84	CME Dynamics Using STEREO and LASCO Observations: The Relative Importance of Lorentz Forces and Solar Wind Drag. , 2017, , 473-489.		0
85	THREE-DIMENSIONAL GEOMETRY OF A CURRENT SHEET IN THE HIGH SOLAR CORONA: EVIDENCE FOR RECONNECTION IN THE LATE STAGE OF THE CORONAL MASS EJECTIONS. Astrophysical Journal, 2016, 826, 94.	4.5	7
86	Scientific challenges in thermosphere-ionosphere forecasting – conclusions from the October 2014 NASA JPL community workshop. Journal of Space Weather and Space Climate, 2016, 6, E01.	3.3	8
87	Waves and Magnetism in the Solar Atmosphere (WAMIS). Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	4
88	THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS. Astrophysical Journal, 2016, 817, 14.	4.5	63
89	DERIVING THE PROPERTIES OF CORONAL PRESSURE FRONTS IN 3D: APPLICATION TO THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT. Astrophysical Journal, 2016, 833, 45.	4.5	83
90	Investigation of the Chromosphere–Corona Interface with the Upgraded Very High Angular Resolution Ultraviolet Telescope (VAULT2.0). Journal of Astronomical Instrumentation, 2016, 05, .	1.5	8

#	Article	IF	CITATIONS
91	USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs. Astrophysical Journal, 2016, 827, 70.	4.5	25
92	MULTI-VIEWPOINT OBSERVATIONS OF A WIDELY DISTRIBUTED SOLAR ENERGETIC PARTICLE EVENT: THE ROLE OF EUV WAVES AND WHITE-LIGHT SHOCK SIGNATURES. Astrophysical Journal, 2016, 821, 31.	4.5	26
93	Numerical simulation of multiple CMEâ€driven shocks in the month of 2011 September. Journal of Geophysical Research: Space Physics, 2016, 121, 1839-1856.	2.4	19
94	LASCO White-Light Observations of Eruptive Current Sheets Trailing CMEs. Solar Physics, 2016, 291, 3725-3749.	2.5	27
95	RELATIONSHIP OF EUV IRRADIANCE CORONAL DIMMING SLOPE AND DEPTH TO CORONAL MASS EJECTION SPEED AND MASS. Astrophysical Journal, 2016, 830, 20.	4.5	45
96	A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS. Astrophysical Journal, 2016, 823, 27.	4.5	67
97	AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION. Astrophysical Journal Letters, 2016, 823, L5.	8.3	20
98	Global magnetohydrodynamic simulation of the 15 March 2013 coronal mass ejection event—Interpretation of the 30–80 MeV proton flux. Journal of Geophysical Research: Space Physics, 2016, 121, 56-76.	2.4	19
99	The Wide-Field Imager for Solar Probe Plus (WISPR). Space Science Reviews, 2016, 204, 83-130.	8.1	140
100	LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK. Astrophysical Journal, 2016, 819, 72.	4.5	72
101	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 2015, 13, 374-385.	3.7	65
102	USING MULTIPLE-VIEWPOINT OBSERVATIONS TO DETERMINE THE INTERACTION OF THREE CORONAL MASS EJECTIONS OBSERVED ON 2012 MARCH 5. Astrophysical Journal, 2015, 815, 70.	4.5	31
103	CME PROPAGATION: WHERE DOES AERODYNAMIC DRAG "TAKE OVER�. Astrophysical Journal, 2015, 809, 158.	4.5	41
104	Mission to the Sun-Earth L ₅ Lagrangian Point: An Optimal Platform for Space Weather Research. Space Weather, 2015, 13, 197-201.	3.7	62
105	Observations and Analysis of the Non-Radial Propagation of Coronal Mass Ejections Near the Sun. Solar Physics, 2015, 290, 3343-3364.	2.5	45
106	On extracting plasma compression signatures from white light coronal images. Journal of Physics: Conference Series, 2015, 642, 012024.	0.4	1
107	ARE HALO-LIKE SOLAR CORONAL MASS EJECTIONS MERELY A MATTER OF GEOMETRIC PROJECTION EFFECTS?. Astrophysical Journal Letters, 2015, 799, L29.	8.3	44
108	PERIODIC DENSITY STRUCTURES AND THE ORIGIN OF THE SLOW SOLAR WIND. Astrophysical Journal, 2015, 807, 176.	4.5	87

#	Article	IF	CITATIONS
109	FORMATION OF MAGNETIC FLUX ROPES DURING CONFINED FLARING WELL BEFORE THE ONSET OF A PAIR OF MAJOR CORONAL MASS EJECTIONS. Astrophysical Journal, 2015, 809, 34.	4.5	71
110	HOW COMMON ARE HOT MAGNETIC FLUX ROPES IN THE LOW SOLAR CORONA? A STATISTICAL STUDY OF EUV OBSERVATIONS. Astrophysical Journal, 2015, 808, 117.	4.5	72
111	The flux rope nature of coronal mass ejections. Plasma Physics and Controlled Fusion, 2014, 56, 064001.	2.1	53
112	TRACKING THE EVOLUTION OF A COHERENT MAGNETIC FLUX ROPE CONTINUOUSLY FROM THE INNER TO THE OUTER CORONA. Astrophysical Journal, 2014, 780, 28.	4.5	74
113	SOLAR ENERGETIC PARTICLE EVENTS IN DIFFERENT TYPES OF SOLAR WIND. Astrophysical Journal, 2014, 791, 4.	4.5	15
114	SELF-SIMILAR EXPANSION OF SOLAR CORONAL MASS EJECTIONS: IMPLICATIONS FOR LORENTZ SELF-FORCE DRIVING. Astrophysical Journal, 2014, 790, 125.	4.5	35
115	DO INTERACTING CORONAL MASS EJECTIONS PLAY A ROLE IN SOLAR ENERGETIC PARTICLE EVENTS?. Astrophysical Journal, 2014, 784, 47.	4.5	39
116	Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet. Solar Physics, 2014, 289, 2141-2156.	2.5	92
117	CME Expansion as the Driver of Metric Type II Shock Emission as Revealed by Self-consistent Analysis of High-Cadence EUV Images and Radio Spectrograms. Solar Physics, 2014, 289, 2123-2139.	2.5	31
118	Solar Sources of Interplanetary Coronal Mass Ejections During the Solar Cycle 23/24 Minimum. Solar Physics, 2014, 289, 3773-3797.	2.5	49
119	Waves and Magnetism in the Solar Atmosphere (WAMIS). Proceedings of the International Astronomical Union, 2014, 10, 121-126.	0.0	0
120	A Fractionated Space Weather Base at L5 using CubeSats and Solar Sails. , 2014, , 269-288.		8
121	How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs. Solar Physics, 2013, 284, 179.	2.5	201
122	SDO Observations of Solar Jets. Solar Physics, 2013, 284, 427-438.	2.5	14
123	Study of a Coronal Mass Ejection with SOHO/UVCS and STEREO data. Advances in Space Research, 2013, 52, 957-962.	2.6	4
124	A PLASMA Î ² TRANSITION WITHIN A PROPAGATING FLUX ROPE. Astrophysical Journal, 2013, 779, 142.	4.5	8
125	Tracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth. Space Weather, 2013, 11, 245-261.	3.7	15
126	Three-Dimensional Evolution of Erupted Flux Ropes from the Sun (2 – 20 R ⊙) to 1 AU. Solar Physic 284, 203-215.	s,2013,	55

#	Article	IF	CITATIONS
127	THE HEIGHT EVOLUTION OF THE "TRUE―CORONAL MASS EJECTION MASS DERIVED FROM <i>STEREO</i> CORD COR2 OBSERVATIONS. Astrophysical Journal, 2013, 768, 31.	DR1 4.5	42
128	Origins of Rolling, Twisting, and Non-radial Propagation of Eruptive Solar Events. Solar Physics, 2013, 287, 391-413.	2.5	70
129	Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. Journal of Geophysical Research: Space Physics, 2013, 118, 6866-6879.	2.4	68
130	Solar energetic particles and their variability from the sun and beyond. AIP Conference Proceedings, 2013, , .	0.4	11
131	A COMPARISON OF THE INTENSITIES AND ENERGIES OF GRADUAL SOLAR ENERGETIC PARTICLE EVENTS WITH THE DYNAMICAL PROPERTIES OF ASSOCIATED CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 769, 143.	4.5	42
132	DERIVATION OF THE MAGNETIC FIELD IN A CORONAL MASS EJECTION CORE VIA MULTI-FREQUENCY RADIO IMAGING. Astrophysical Journal, 2013, 766, 130.	4.5	53
133	INNER HELIOSPHERIC EVOLUTION OF A â€∞STEALTH―CME DERIVED FROM MULTI-VIEW IMAGING AND MULTIPOINT IN SITU OBSERVATIONS. I. PROPAGATION TO 1 AU. Astrophysical Journal, 2013, 779, 55.	4.5	48
134	Seeing the corona with the solar probe plus mission: the wide-field imager for solar probe+ (WISPR). Proceedings of SPIE, 2013, , .	0.8	6
135	The solar and heliospheric imager (SoloHI) instrument for the solar orbiter mission. Proceedings of SPIE, 2013, , .	0.8	14
136	DIRECT EVIDENCE FOR A FAST CORONAL MASS EJECTION DRIVEN BY THE PRIOR FORMATION AND SUBSEQUENT DESTABILIZATION OF A MAGNETIC FLUX ROPE. Astrophysical Journal, 2013, 764, 125.	4.5	172
137	Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus. Proceedings of SPIE, 2013, , .	0.8	7
138	On the relationship between interplanetary coronal mass ejections and magnetic clouds. Annales Geophysicae, 2013, 31, 1251-1265.	1.6	60
139	INVESTIGATION OF THE FORMATION AND SEPARATION OF AN EXTREME-ULTRAVIOLET WAVE FROM THE EXPANSION OF A CORONAL MASS EJECTION. Astrophysical Journal Letters, 2012, 745, L5.	8.3	100
140	GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS. Astrophysical Journal, 2012, 759, 71.	4.5	340
141	THE LONGITUDINAL PROPERTIES OF A SOLAR ENERGETIC PARTICLE EVENT INVESTIGATED USING MODERN SOLAR IMAGING. Astrophysical Journal, 2012, 752, 44.	4.5	156
142	INITIATION AND DEVELOPMENT OF THE WHITE-LIGHT AND RADIO CORONAL MASS EJECTION ON 2001 APRIL 15. Astrophysical Journal, 2012, 750, 147.	4.5	35
143	Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs. Solar Physics, 2012, 280, 273-293.	2.5	29
144	Magnetic Topology of Active Regions and Coronal Holes: Implications for Coronal Outflows and the Solar Wind. Solar Physics, 2012, 281, 237-262.	2.5	58

#	Article	IF	CITATIONS
145	Three-Dimensional Properties of Coronal Mass Ejections from STEREO/SECCHI Observations. Solar Physics, 2012, 281, 167.	2.5	30
146	Uncovering the Birth of a Coronal Mass Ejection from Two-Viewpoint SECCHI Observations. Solar Physics, 2012, 280, 509-523.	2.5	20
147	A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS. Astrophysical Journal, 2012, 759, 103.	4.5	17
148	A decade of coronagraphic and spectroscopic studies of CME-driven shocks. AIP Conference Proceedings, 2012, , .	0.4	9
149	Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nature Physics, 2012, 8, 923-928.	16.7	86
150	SECONDARY WAVES AND/OR THE "REFLECTION―FROM AND "TRANSMISSION―THROUGH A CORONAL OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH <i>SDO</i> /AIA AND <i>STEREO</i> /EUVI. Astrophysical Journal, 2012, 756, 143.	HOLE 4.5	82
151	High spatial resolution VAULT H-Ly <i>$\hat{I}\pm$observations and multiwavelength analysis of an active region filament. Astronomy and Astrophysics, 2012, 541, A108.</i>	5.1	13
152	On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode (Invited Review). Solar Physics, 2012, 281, 187.	2.5	101
153	Remote and in situ observations of an unusual Earthâ€directed coronal mass ejection from multiple viewpoints. Journal of Geophysical Research, 2012, 117, .	3.3	86
154	Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations. Astronomy and Astrophysics, 2011, 525, A27.	5.1	31
155	DERIVING THE PHYSICAL PARAMETERS OF A SOLAR EJECTION WITH AN ISOTROPIC MAGNETOHYDRODYNAMIC EVOLUTIONARY MODEL. Astrophysical Journal, 2011, 741, 47.	4.5	8
156	THE FIRST OBSERVATION OF A RAPIDLY ROTATING CORONAL MASS EJECTION IN THE MIDDLE CORONA. Astrophysical Journal Letters, 2011, 733, L23.	8.3	98
157	UNCOVERING THE WAVE NATURE OF THE EIT WAVE FOR THE 2010 JANUARY 17 EVENT THROUGH ITS CORRELATION TO THE BACKGROUND MAGNETOSONIC SPEED. Astrophysical Journal, 2011, 742, 131.	4.5	14
158	INTERPRETING THE PROPERTIES OF SOLAR ENERGETIC PARTICLE EVENTS BY USING COMBINED IMAGING AND MODELING OF INTERPLANETARY SHOCKS. Astrophysical Journal, 2011, 735, 7.	4.5	92
159	CME reconstruction: Pre-STEREO and STEREO era. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1156-1165.	1.6	38
160	A novel technique to measure intensity fluctuations in EUV images and to detect coronal sound waves nearby active regions. Astronomy and Astrophysics, 2011, 526, A58.	5.1	17
161	GEOMETRIC TRIANGULATION OF IMAGING OBSERVATIONS TO TRACK CORONAL MASS EJECTIONS CONTINUOUSLY OUT TO 1 AU. Astrophysical Journal Letters, 2010, 710, L82-L87.	8.3	170
162	THE GENESIS OF AN IMPULSIVE CORONAL MASS EJECTION OBSERVED AT ULTRA-HIGH CADENCE BY AIA ON <i>SDO</i> . Astrophysical Journal Letters, 2010, 724, L188-L193.	8.3	92

#	Article	IF	CITATIONS
163	EXTREME ULTRAVIOLET OBSERVATIONS AND ANALYSIS OF MICRO-ERUPTIONS AND THEIR ASSOCIATED CORONAL WAVES. Astrophysical Journal, 2010, 709, 369-376.	4.5	32
164	COMPREHENSIVE ANALYSIS OF CORONAL MASS EJECTION MASS AND ENERGY PROPERTIES OVER A FULL SOLAR CYCLE. Astrophysical Journal, 2010, 722, 1522-1538.	4.5	205
165	The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations. Solar Physics, 2010, 261, 53-75.	2.5	54
166	Tracking of Coronal White-Light Events by Texture. Solar Physics, 2010, 262, 481-494.	2.5	11
167	Examining Periodic Solar-Wind Density Structures Observed in the SECCHI Heliospheric Imagers. Solar Physics, 2010, 267, 175-202.	2.5	56
168	RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING. Astrophysical Journal, 2010, 722, 1762-1777.	4.5	128
169	Exploiting Laboratory and Heliophysics Plasma Synergies. Energies, 2010, 3, 1014-1048.	3.1	2
170	DETERMINING THE AZIMUTHAL PROPERTIES OF CORONAL MASS EJECTIONS FROM MULTI-SPACECRAFT REMOTE-SENSING OBSERVATIONS WITH <i>STEREO</i> SECCHI. Astrophysical Journal, 2010, 715, 493-499.	4.5	126
171	Intermittent release of transients in the slow solar wind: 1. Remote sensing observations. Journal of Geophysical Research, 2010, 115, .	3.3	80
172	Evidence for extended acceleration of solar flare ions from 1–8 MeV solar neutrons detected with the MESSENGER Neutron Spectrometer. Journal of Geophysical Research, 2010, 115, .	3.3	26
173	Sun to 1 AU propagation and evolution of a slow streamerâ€blowout coronal mass ejection. Journal of Geophysical Research, 2010, 115, .	3.3	65
174	Toward understanding the early stages of an impulsively accelerated coronal mass ejection. Astronomy and Astrophysics, 2010, 522, A100.	5.1	83
175	On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data. Annales Geophysicae, 2010, 28, 203-215.	1.6	119
176	FIRST MEASUREMENTS OF THE MASS OF CORONAL MASS EJECTIONS FROM THE EUV DIMMING OBSERVED WITH <i>STEREO</i> EUVI <i>A</i> + <i>B</i> SPACECRAFT. Astrophysical Journal, 2009, 706, 376-392.	4.5	53
177	FIRST DETERMINATION OF THE TRUE MASS OF CORONAL MASS EJECTIONS: A NOVEL APPROACH TO USING THE TWO <i>STEREO</i> VIEWPOINTS. Astrophysical Journal, 2009, 698, 852-858.	4.5	122
178	STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Annales Geophysicae, 2009, 27, 4491-4503.	1.6	102
179	Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction. Annales Geophysicae, 2009, 27, 3479-3488.	1.6	146
180	"EXTREME ULTRAVIOLET WAVES―ARE WAVES: FIRST QUADRATURE OBSERVATIONS OF AN EXTREME ULTRAVIOLET WAVE FROM <i>STEREO</i> . Astrophysical Journal, 2009, 700, L182-L186.	4.5	145

#	Article	IF	CITATIONS
181	Dynamic Ly <i>\hat{l}±</i> jets. Astronomy and Astrophysics, 2009, 499, 917-921.	5.1	9
182	NO TRACE LEFT BEHIND:<(i>STEREOOBSERVATION OF A CORONAL MASS EJECTION WITHOUT LOW CORONAL SIGNATURES. Astrophysical Journal, 2009, 701, 283-291.	4.5	187
183	A Review of Coronagraphic Observations of Shocks Driven by Coronal Mass Ejections. , 2009, , .		30
184	The SOHO/LASCO CME Catalog. Earth, Moon and Planets, 2009, 104, 295-313.	0.6	451
185	POLAR investigation of the Sun—POLARIS. Experimental Astronomy, 2009, 23, 1079-1117.	3.7	24
186	Multispacecraft Observations of Magnetic Clouds andÂTheir Solar Origins between 19 and 23 May 2007. Solar Physics, 2009, 254, 325-344.	2.5	68
187	Solar – Terrestrial Simulation in the STEREO Era: TheÂ24 – 25 January 2007 Eruptions. Sola 256, 269-284.	r Physics, 2.5	2009, 62
188	Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data. Solar Physics, 2009, 256, 111-130.	2.5	419
189	Two Years of the STEREO Heliospheric Imagers. Solar Physics, 2009, 256, 219-237.	2.5	47
190	What Is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models. Solar Physics, 2009, 259, 49-71.	2.5	90
191	The Impact of Geometry on Observations of CME Brightness and Propagation. Solar Physics, 2009, 259, 179-197.	2.5	10
192	CORONAL MASS EJECTIONS AND GLOBAL CORONAL MAGNETIC FIELD RECONFIGURATION. Astrophysical Journal, 2009, 698, L51-L55.	4.5	33
193	DRIVING CURRENTS FOR FLUX ROPE CORONAL MASS EJECTIONS. Astrophysical Journal, 2009, 693, 1219-1222.	4.5	8
194	STUDY OF THE 2007 APRIL 20 CME-COMET INTERACTION EVENT WITH AN MHD MODEL. Astrophysical Journal, 2009, 696, L56-L60.	4.5	19
195	QUANTITATIVE MEASUREMENTS OF CORONAL MASS EJECTION-DRIVEN SHOCKS FROM LASCO OBSERVATIONS. Astrophysical Journal, 2009, 693, 267-275.	4.5	154
196	Morphology and density structure of post-CME current sheets. Astronomy and Astrophysics, 2009, 499, 905-916.	5.1	49
197	Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Science Reviews, 2008, 136, 67.	8.1	1,422
198	Heliospheric Images of the Solar Wind at Earth. Astrophysical Journal, 2008, 675, 853-862.	4.5	127

#	Article	IF	CITATIONS
199	How Efficient are Coronal Mass Ejections at Accelerating Solar Energetic Particles?. AIP Conference Proceedings, 2008, , .	0.4	18
200	A Fresh View of the Extremeâ€Ultraviolet Corona from the Application of a New Imageâ€Processing Technique. Astrophysical Journal, 2008, 674, 1201-1206.	4.5	74
201	SECCHI Observations of the Sun's Garden-Hose Density Spiral. Astrophysical Journal, 2008, 674, L109-L112.	4.5	61
202	Threeâ€dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Comparison with LASCO Coronagraph Observations. Astrophysical Journal, 2008, 684, 1448-1460.	4.5	137
203	The Solar Magnetic Field and Coronal Dynamics of the Eruption on 2007 May 19. Astrophysical Journal, 2008, 681, L37-L40.	4.5	35
204	<i>STEREO</i> SECCHI Stereoscopic Observations Constraining the Initiation of Polar Coronal Jets. Astrophysical Journal, 2008, 680, L73-L76.	4.5	137
205	The Brightness of Density Structures at Large Solar Elongation Angles: What Is Being Observed by <i>STEREO</i> SECCHI?. Astrophysical Journal, 2008, 684, L111-L114.	4.5	34
206	Physical parameters along the boundaries of a mid-latitude streamer and in its adjacent regions. Astronomy and Astrophysics, 2008, 488, 303-310.	5.1	34
207	Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). , 2008, , 67-115.		5
208	Identification of a Peculiar Radio Source in the Aftermath of Large Coronal Mass Ejection Events. Astrophysical Journal, 2007, 656, L105-L108.	4.5	5
209	Features and Properties of Coronal Mass Ejection/Flare Current Sheets. Astrophysical Journal, 2007, 658, L123-L126.	4.5	83
210	The Quiet Sun Network at Subarcsecond Resolution: VAULT Observations and Radiative Transfer Modeling of Cool Loops. Astrophysical Journal, 2007, 664, 1214-1220.	4.5	35
211	First Direct Observation of the Interaction between a Comet and a Coronal Mass Ejection Leading to a Complete Plasma Tail Disconnection. Astrophysical Journal, 2007, 668, L79-L82.	4.5	55
212	Physical parameters of a mid-latitude streamer during the declining phase of the solar cycle. Astronomy and Astrophysics, 2007, 475, 707-715.	5.1	15
213	Energetics of solar coronal mass ejections. Astronomy and Astrophysics, 2007, 467, 685-693.	5.1	42
214	The Physical Properties of Coronal Streamers. II Astrophysical Journal, 2007, 671, 912-925.	4.5	11
215	Modeling of Flux Rope Coronal Mass Ejections. Astrophysical Journal, 2006, 652, 763-773.	4.5	403
216	Calibration of the Soho/Lasco C3 White Light Coronagraph. Solar Physics, 2006, 233, 331-372.	2.5	55

#	Article	IF	CITATIONS
217	Physical Properties of a 2003 April Quiescent Streamer. Astrophysical Journal, 2006, 645, 720-731.	4.5	20
218	The Fluxâ€Rope Scaling of the Acceleration of Coronal Mass Ejections and Eruptive Prominences. Astrophysical Journal, 2006, 649, 452-463.	4.5	43
219	Theoretical Investigation of the Onsets of Type II Radio Bursts during Solar Eruptions. Astrophysical Journal, 2006, 649, 1110-1123.	4.5	53
220	Analysis of the Velocity Field of CMEs Using Optical Flow Methods. Astrophysical Journal, 2006, 652, 1747-1754.	4.5	27
221	The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations. Astrophysical Journal, 2006, 642, 1216-1221.	4.5	178
222	A Radio Burst and Its Associated CME on March 17, 2002. Solar Physics, 2006, 239, 277-292.	2.5	25
223	Coronal Observations of CMEs. Space Science Reviews, 2006, 123, 127-176.	8.1	72
224	Multi-Wavelength Observations of CMEs and Associated Phenomena. Space Science Reviews, 2006, 123, 341-382.	8.1	52
225	Sunspot Gyroresonance Emission at 17 GHz: A Statistical Study. Publication of the Astronomical Society of Japan, 2006, 58, 11-20.	2.5	25
226	Multi-Wavelength Observations of CMEs and Associated Phenomena. Space Sciences Series of ISSI, 2006, , 341-382.	0.0	0
227	Coronal Observations of CMEs. Space Sciences Series of ISSI, 2006, , 127-176.	0.0	0
228	Detection and Diagnostics of a Coronal Shock Wave Driven by a Partialâ€Halo Coronal Mass Ejection on 2000 June 28. Astrophysical Journal, 2005, 621, 1121-1128.	4.5	46
229	Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions. Journal of Geophysical Research, 2005, 110, .	3.3	153
230	Fast coronal mass ejection environments and the production of solar energetic particle events. Journal of Geophysical Research, 2005, 110, .	3.3	67
231	Energy partition in two solar flare/CME events. Journal of Geophysical Research, 2004, 109, .	3.3	223
232	An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature, 2004, 432, 78-81.	27.8	123
233	A Study of the Kinematic Evolution of Coronal Mass Ejections. Astrophysical Journal, 2004, 604, 420-432.	4.5	224
234	Energetics of Coronal Mass Ejections. Proceedings of the International Astronomical Union, 2004, 2004, 314-315.	0.0	1

#	Article	IF	CITATIONS
235	Radio Observations of Coronal Mass Ejections. , 2004, , 223-242.		7
236	Direct Detection of a Coronal Mass Ejection–Associated Shock in Large Angle and Spectrometric Coronagraph Experiment White‣ight Images. Astrophysical Journal, 2003, 598, 1392-1402.	4.5	197
237	Constraints on Coronal Mass Ejection Dynamics from Simultaneous Radio and White‣ight Observations. Astrophysical Journal, 2003, 590, 533-546.	4.5	90
238	Physical Parameters of the 2000 February 11 Coronal Mass Ejection: Ultraviolet Spectra versus White‣ight Images. Astrophysical Journal, 2003, 597, 1118-1134.	4.5	53
239	Solar Phenomena Associated with "EIT Waves― Astrophysical Journal, 2002, 569, 1009-1015.	4.5	218
240	Analysis of Lasco Observations of Streamer Blowout Events. COSPAR Colloquia Series, 2002, 14, 201-208.	0.2	12
241	Solar energetic electron events and coronal shocks. Astronomy and Astrophysics, 2002, 385, 1078-1088.	5.1	70
242	Determination of three-dimensional structure of coronal streamers and relationship to the solar magnetic field. Journal of Geophysical Research, 2001, 106, 15903-15915.	3.3	36
243	Tracing shock waves from the corona to 1 AU: Type II radio emission and relationship with CMEs. Journal of Geophysical Research, 2001, 106, 25301-25312.	3.3	77
244	Statistical analysis of coronal shock dynamics implied by radio and white-light observations. Journal of Geophysical Research, 2001, 106, 25279-25289.	3.3	52
245	SOHOObservations of a Coronal Mass Ejection. Astrophysical Journal, 2001, 553, 922-934.	4.5	98
246	The Coronal Mass Ejection of 1998 April 20: Direct Imaging at Radio Wavelengths. Astrophysical Journal, 2001, 558, L65-L69.	4.5	160
247	Title is missing!. Solar Physics, 2001, 200, 63-73.	2.5	33
248	Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements. Astrophysical Journal, 2001, 548, 1081-1086.	4.5	106
249	Coronal Mass Ejection of 2000 July 14 Flare Event: Imaging from Nearâ€Sun to Earth Environment. Astrophysical Journal, 2001, 559, 1180-1189.	4.5	95
250	On the Correlation between Coronal and Lower Transition Region Structures at Arcsecond Scales. Astrophysical Journal, 2001, 563, 374-380.	4.5	33
251	Largeâ€Angle Spectrometric Coronagraph Measurements of the Energetics of Coronal Mass Ejections. Astrophysical Journal, 2000, 534, 456-467.	4.5	240
252	Development of Coronal Mass Ejections: Radio Shock Signatures. Astrophysical Journal, 2000, 528, L49-L51.	4.5	68

#	Article	IF	CITATIONS
253	<title>In-flight performance of the Very high Angular resolution ULtraviolet Telescope sounding rocket payload</title> . , 2000, 4139, 340.		0
254	Coronal mass ejections and large scale structure of the corona. Advances in Space Research, 2000, 25, 1843-1846.	2.6	1
255	Title is missing!. Solar Physics, 2000, 194, 371-391.	2.5	110
256	Flare- and coronal mass ejection (CME)-associated type II bursts and related radio emissions. Journal of Geophysical Research, 2000, 105, 18225-18234.	3.3	12
257	Radio-rich solar eruptive events. Geophysical Research Letters, 2000, 27, 1427-1430.	4.0	87
258	Large-scale structure and coronal dynamics from joint radio, SOHO/EIT and coronagraph observations. , 1999, , .		2
259	Calibrated H  I Lyman α Observations with TRACE. Solar Physics, 1999, 190, 351-361.	2.5	19
260	Radio signatures of a fast coronal mass ejection development on November 6, 1997. Journal of Geophysical Research, 1999, 104, 12507-12513.	3.3	66
261	Nonthermal Radio Signatures of Coronal Disturbances with and without Coronal Mass Ejections. Astrophysical Journal, 1999, 511, 451-465.	4.5	26
262	The Structure of the Solar Corona above Sunspots as Inferred from Radio, Xâ€Ray, and Magnetic Field Observations. Astrophysical Journal, 1997, 489, 403-425.	4.5	30
263	Joint radio and soft x-ray imaging of an ?anemone? active region. Solar Physics, 1996, 163, 99-120.	2.5	11
264	Multiband VLA Observations of Solar Active Regions: Implications for the Distribution of Coronal Plasma. Astrophysical Journal, 1996, 466, 1039.	4.5	8
265	Energetic particle evolution during coronal mass ejection passage from 0.3 to 1 AU. Astronomy and Astrophysics, 0, , .	5.1	9