
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6302435/publications.pdf Version: 2024-02-01



Μλττ Ικλοι

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Implications for megathrust slip behavior and pore pressure at the shallow northern Cascadia<br>subduction zone from laboratory friction experiments. Earth and Planetary Science Letters, 2022, 578,<br>117297.                              | 4.4  | 4         |
| 2  | Frictional and Lithological Controls on Shallow Slow Slip at the Northern Hikurangi Margin.<br>Geochemistry, Geophysics, Geosystems, 2022, 23, .                                                                                              | 2.5  | 16        |
| 3  | Plateâ€Rate Frictional Behavior of Sediment Inputs to the Hikurangi Subduction Margin: How Does<br>Lithology Control Slow Slip Events?. Geochemistry, Geophysics, Geosystems, 2022, 23, .                                                     | 2.5  | 6         |
| 4  | Velocity-weakening friction induced by laboratory-controlled lithification. Earth and Planetary Science Letters, 2021, 554, 116682.                                                                                                           | 4.4  | 9         |
| 5  | Evidence of Seismic Slip on a Large Splay Fault in the Hikurangi Subduction Zone. Geochemistry,<br>Geophysics, Geosystems, 2021, 22, e2021GC009638.                                                                                           | 2.5  | 6         |
| 6  | Spatial Patterns in Frictional Behavior of Sediments Along the Kumano Transect in the Nankai Trough.<br>Journal of Geophysical Research: Solid Earth, 2021, 126, .                                                                            | 3.4  | 9         |
| 7  | Frictional Characteristics of Oceanic Transform Faults: Progressive Deformation and Alteration Controls Seismic Style. Geophysical Research Letters, 2021, 48, .                                                                              | 4.0  | 4         |
| 8  | Faulting in the laboratory. , 2020, , 167-220.                                                                                                                                                                                                |      | 2         |
| 9  | Implications of basement rock alteration in the Nankai Trough, Japan for subduction megathrust slip<br>behavior. Tectonophysics, 2020, 774, 228275.                                                                                           | 2.2  | 11        |
| 10 | The State of Stress on the Fault Before, During, and After a Major Earthquake. Annual Review of Earth<br>and Planetary Sciences, 2020, 48, 49-74.                                                                                             | 11.0 | 49        |
| 11 | Frictional Strengthening Explored During Non‣teady State Shearing: Implications for Fault Stability<br>and Slip Event Recurrence Time. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020015.                                | 3.4  | 3         |
| 12 | Application of Constitutive Friction Laws to Glacier Seismicity. Geophysical Research Letters, 2020, 47, e2020GL088964.                                                                                                                       | 4.0  | 19        |
| 13 | Mixed Brittle and Viscous Strain Localization in Pelagic Sediments Seaward of the Hikurangi Margin,<br>New Zealand. Tectonics, 2020, 39, e2019TC005965.                                                                                       | 2.8  | 8         |
| 14 | The rough ride of subducting fault surfaces. Nature Geoscience, 2020, 13, 329-330.                                                                                                                                                            | 12.9 | 2         |
| 15 | Friction experiments under in-situ stress reveal unexpected velocity-weakening in Nankai accretionary prism samples. Earth and Planetary Science Letters, 2020, 538, 116180.                                                                  | 4.4  | 15        |
| 16 | Lowâ€Temperature Frictional Characteristics of Chloriteâ€Epidoteâ€Amphibole Assemblages: Implications<br>for Strength and Seismic Style of Retrograde Fault Zones. Journal of Geophysical Research: Solid<br>Earth, 2020, 125, e2020JB019487. | 3.4  | 19        |
| 17 | Slow slip source characterized by lithological and geometric heterogeneity. Science Advances, 2020,<br>6, eaay3314.                                                                                                                           | 10.3 | 95        |
| 18 | Observations of Laboratory and Natural Slow Slip Events: Hikurangi Subduction Zone, New Zealand.<br>Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008717.                                                                            | 2.5  | 11        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Laboratory slow slip events in natural geological materials. Geophysical Journal International, 2019, 218, 354-387.                                                                                                                       | 2.4  | 24        |
| 20 | Quasi-Dynamic 3D Modeling of the Generation and Afterslip of a Tohoku-oki Earthquake Considering<br>Thermal Pressurization and Frictional Properties of the Shallow Plate Boundary. Pure and Applied<br>Geophysics, 2019, 176, 3951-3973. | 1.9  | 8         |
| 21 | Lithologic control of frictional strength variations in subduction zone sediment inputs. , 2018, 14, 604-625.                                                                                                                             |      | 22        |
| 22 | Frictional Behavior of Input Sediments to the Hikurangi Trench, New Zealand. Geochemistry,<br>Geophysics, Geosystems, 2018, 19, 2973-2990.                                                                                                | 2.5  | 41        |
| 23 | Coseismic slip propagation on the Tohoku plate boundary fault facilitated by slipâ€dependent weakening<br>during slow fault slip. Geophysical Research Letters, 2017, 44, 8749-8756.                                                      | 4.0  | 14        |
| 24 | Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates. Science Advances, 2017, 3, e1701269.                                                                                                                | 10.3 | 47        |
| 25 | A microphysical interpretation of rate―and stateâ€dependent friction for fault gouge. Geochemistry,<br>Geophysics, Geosystems, 2016, 17, 1660-1677.                                                                                       | 2.5  | 69        |
| 26 | Laboratory observations of timeâ€dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. Journal of Geophysical Research: Solid Earth, 2016, 121, 1183-1201.                                      | 3.4  | 82        |
| 27 | Elevated time-dependent strengthening rates observed in San Andreas Fault drilling samples. Earth<br>and Planetary Science Letters, 2016, 450, 164-172.                                                                                   | 4.4  | 14        |
| 28 | Do Embedded Volcanoclastic Layers Serve as Potential Glide Planes?: An Integrated Analysis from the<br>Gela Basin Offshore Southern Sicily. Advances in Natural and Technological Hazards Research, 2016, ,<br>273-280.                   | 1.1  | 6         |
| 29 | Velocity―and slipâ€dependent weakening in simulated fault gouge: Implications for multimode fault slip.<br>Geophysical Research Letters, 2015, 42, 9247-9254.                                                                             | 4.0  | 23        |
| 30 | Experimental investigation of incipient shear failure in foliated rock. Journal of Structural Geology, 2015, 77, 82-91.                                                                                                                   | 2.3  | 28        |
| 31 | Lithification facilitates frictional instability in argillaceous subduction zone sediments.<br>Tectonophysics, 2015, 665, 177-185.                                                                                                        | 2.2  | 16        |
| 32 | Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011<br>Tohoku-Oki earthquake. Earth and Planetary Science Letters, 2015, 412, 35-41.                                                            | 4.4  | 68        |
| 33 | Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench. Geology, 2015, 43, 155-158.                                                                                                                          | 4.4  | 65        |
| 34 | Origin of a zone of anomalously high porosity in the subduction inputs to Nankai Trough. Marine<br>Geology, 2015, 361, 147-162.                                                                                                           | 2.1  | 17        |
| 35 | Shear behavior of DFDP-1 borehole samples from the Alpine Fault, New Zealand, under a wide range of experimental conditions. International Journal of Earth Sciences, 2015, 104, 1523-1535.                                               | 1.8  | 14        |
| 36 | The role of cohesion and overconsolidation in submarine slope failure. Marine Geology, 2015, 369, 153-161.                                                                                                                                | 2.1  | 18        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates. Nature<br>Geoscience, 2015, 8, 870-874.                                                                             | 12.9 | 64        |
| 38 | Principal slip zones: Precursors but not recorders of earthquake slip. Geology, 2015, 43, 955-958.                                                                                                        | 4.4  | 23        |
| 39 | Frictional strength, rate-dependence, and healing in DFDP-1 borehole samples from the Alpine Fault,<br>New Zealand. Tectonophysics, 2014, 630, 1-8.                                                       | 2.2  | 24        |
| 40 | Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake. Science, 2013, 339,<br>687-690.                                                                                          | 12.6 | 112       |
| 41 | Slip weakening as a mechanism for slow earthquakes. Nature Geoscience, 2013, 6, 468-472.                                                                                                                  | 12.9 | 121       |
| 42 | Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology, 2013, 41, 891-894.                                                    | 4.4  | 49        |
| 43 | Shear strength of sediments approaching subduction in the Nankai Trough, Japan as constraints on forearc mechanics. Geochemistry, Geophysics, Geosystems, 2013, 14, 2716-2730.                            | 2.5  | 40        |
| 44 | Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism. Marine Geology, 2012, 295-298, 1-13.                                                         | 2.1  | 24        |
| 45 | Comparison of frictional strength and velocity dependence between fault zones in the Nankai<br>accretionary complex. Geochemistry, Geophysics, Geosystems, 2011, 12, .                                    | 2.5  | 79        |
| 46 | Cohesive strength of clay-rich sediment. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                                                                 | 4.0  | 66        |
| 47 | The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. Journal of Geophysical Research, 2011, 116, .                        | 3.3  | 66        |
| 48 | Submarine landslide potential near the megasplay fault at the Nankai subduction zone. Earth and<br>Planetary Science Letters, 2011, 312, 453-462.                                                         | 4.4  | 28        |
| 49 | On the relation between fault strength and frictional stability. Geology, 2011, 39, 83-86.                                                                                                                | 4.4  | 278       |
| 50 | Frictional and hydrologic properties of a major splay fault system, Nankai subduction zone.<br>Geophysical Research Letters, 2009, 36, .                                                                  | 4.0  | 54        |
| 51 | Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone<br>processes and sedimentary basin clay fabric evolution. Journal of Geophysical Research, 2009, 114, . | 3.3  | 80        |
| 52 | Frictional and hydrologic properties of clayâ€rich fault gouge. Journal of Geophysical Research, 2009,<br>114, .                                                                                          | 3.3  | 342       |
| 53 | Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. Journal of Geophysical Research, 2007, 112, .                                                                | 3.3  | 154       |
| 54 | Expedition 372B/375 summary. Proceedings of the International Ocean Discovery Program, 0, , .                                                                                                             | 0.0  | 20        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Expedition 372B/375 methods. Proceedings of the International Ocean Discovery Program, 0, , .                                                                                                                                       | 0.0 | 18        |
| 56 | Site U1518. Proceedings of the International Ocean Discovery Program, 0, , .                                                                                                                                                        | 0.0 | 16        |
| 57 | Site U1519. Proceedings of the International Ocean Discovery Program, 0, , .                                                                                                                                                        | 0.0 | 11        |
| 58 | Site U1520. Proceedings of the International Ocean Discovery Program, 0, , .                                                                                                                                                        | 0.0 | 18        |
| 59 | Site U1526. Proceedings of the International Ocean Discovery Program, 0, , .                                                                                                                                                        | 0.0 | 7         |
| 60 | Data report: frictional strength of mudstone samples from the Nankai Trough frontal thrust region,<br>IODP Sites C0006 and C0007. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean<br>Drilling Program, 0, , . | 1.0 | 0         |