Asla Pitkänen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6302006/publications.pdf

Version: 2024-02-01

		22099	27345
186	13,285	59	106
papers	citations	h-index	g-index
100	100	100	11112
188	188	188	11113
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Post-injury ventricular enlargement associates with iron in choroid plexus but not with seizure susceptibility nor lesion atrophy—6-month MRI follow-up after experimental traumatic brain injury. Brain Structure and Function, 2022, 227, 145-158.	1.2	7
2	Transfer RNA-Derived Fragments and isomiRs Are Novel Components of Chronic TBI-Induced Neuropathology. Biomedicines, 2022, 10, 136.	1.4	8
3	Convolutional Neural Networks Enable Robust Automatic Segmentation of the Rat Hippocampus in MRI After Traumatic Brain Injury. Frontiers in Neurology, 2022, 13, 820267.	1.1	8
4	Hippocampal position and orientation as prognostic biomarkers for posttraumatic epileptogenesis: An experimental study in a rat lateral fluid percussion model. Epilepsia, 2022, , .	2.6	1
5	Ultrasonic vocalizations – Novel seizure-related manifestation in rats. Epilepsy Research, 2022, 183, 106927.	0.8	3
6	Seizure Susceptibility and Sleep Disturbance as Biomarkers of Epileptogenesis after Experimental TBI. Biomedicines, 2022, $10,1138.$	1.4	5
7	Biomarkers for posttraumatic epilepsy. Epilepsy and Behavior, 2021, 121, 107080.	0.9	11
8	Identification of clinically relevant biomarkers of epileptogenesis — a strategic roadmap. Nature Reviews Neurology, 2021, 17, 231-242.	4.9	54
9	Plasma miR-9-3p and miR-136-3p as Potential Novel Diagnostic Biomarkers for Experimental and Human Mild Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 1563.	1.8	23
10	Reorganization of Thalamic Inputs to Lesioned Cortex Following Experimental Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 6329.	1.8	6
11	Acute thalamic damage as a prognostic biomarker for postâ€traumatic epileptogenesis. Epilepsia, 2021, 62, 1852-1864.	2.6	14
12	Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 10555.	1.8	6
13	Novel Approaches to Prevent Epileptogenesis After Traumatic Brain Injury. Neurotherapeutics, 2021, 18, 1582-1601.	2.1	14
14	Regulation of Parvalbumin Interactome in the Perilesional Cortex after Experimental Traumatic Brain Injury. Neuroscience, 2021, 475, 52-72.	1.1	2
15	Inflammation at the Neurovascular Unit in Post-traumatic Epilepsy. Agents and Actions Supplements, 2021, , 221-237.	0.2	O
16	Peripheral Infection after Traumatic Brain Injury Augments Excitability in the Perilesional Cortex and Dentate Gyrus. Biomedicines, 2021, 9, 1946.	1.4	6
17	Meeting report: EpiXchange II brings together European epilepsy research projects to discuss latest advances. Epilepsy Research, 2021, 178, 106811.	0.8	1
18	Biomarkers for epileptogenesis and its treatment. Neuropharmacology, 2020, 167, 107735.	2.0	70

#	Article	IF	CITATIONS
19	Acute Downregulation of Novel Hypothalamic Protein Sushi Repeat-Containing Protein X-Linked 2 after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 924-938.	1.7	1
20	Web Application for Quantification of Traumatic Brain Injury-Induced Cortical Lesions in Adult Mice. Neuroinformatics, 2020, 18, 307-317.	1.5	3
21	Postinjury weight rather than cognitive or behavioral impairment predicts development of posttraumatic epilepsy after lateral fluidâ€percussion injury in rats. Epilepsia, 2020, 61, 2035-2052.	2.6	33
22	Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiology of Disease, 2020, 145, 105080.	2.1	92
23	Droplet digital polymerase chain reaction-based quantification of circulating microRNAs using small RNA concentration normalization. Scientific Reports, 2020, 10, 9012.	1.6	3
24	Early Increase in Cortical T ₂ Relaxation Is a Prognostic Biomarker for the Evolution of Severe Cortical Damage, but Not for Epileptogenesis, after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 2580-2594.	1.7	15
25	Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathology, 2020, 30, 897-912.	2.1	23
26	Elevated Acute Plasma miR-124-3p Level Relates to Evolution of Larger Cortical Lesion Area after Traumatic Brain Injury. Neuroscience, 2020, 433, 21-35.	1.1	15
27	Chronic Regulation of miR-124-3p in the Perilesional Cortex after Experimental and Human TBI. International Journal of Molecular Sciences, 2020, 21, 2418.	1.8	20
28	Plau/Plaur double-deficiency did not worsen lesion severity or vascular integrity after traumatic brain injury. Neuroscience Letters, 2020, 729, 134935.	1.0	3
29	Big data sharing and analysis to advance research in post-traumatic epilepsy. Neurobiology of Disease, 2019, 123, 127-136.	2.1	20
30	Epilepsy biomarkers – Toward etiology and pathology specificity. Neurobiology of Disease, 2019, 123, 42-58.	2.1	117
31	MRS Reveals Chronic Inflammation in T2w MRI-Negative Perilesional Cortex – A 6-Months Multimodal Imaging Follow-Up Study. Frontiers in Neuroscience, 2019, 13, 863.	1.4	13
32	Lateral fluid-percussion injury leads to pituitary atrophy in rats. Scientific Reports, 2019, 9, 11819.	1.6	2
33	Genotype and Injury Effect on the Expression of a Novel Hypothalamic Protein Sushi Repeat-Containing Protein X-Linked 2 (SRPX2). Neuroscience, 2019, 415, 184-200.	1.1	3
34	In Vitro and In Vivo Pipeline for Validation of Disease-Modifying Effects of Systems Biology-Derived Network Treatments for Traumatic Brain Injury—Lessons Learned. International Journal of Molecular Sciences, 2019, 20, 5395.	1.8	9
35	Preface - Practical and theoretical considerations for performing a multi-center preclinical biomarker discovery study of post-traumatic epileptogenesis: lessons learned from the EpiBioS4Rx consortium. Epilepsy Research, 2019, 156, 106080.	0.8	8
36	Visualization of thalamic calcium influx with quantitative susceptibility mapping as a potential imaging biomarker for repeated mild traumatic brain injury. Neurolmage, 2019, 200, 250-258.	2.1	14

#	Article	IF	CITATIONS
37	Advancing research toward faster diagnosis, better treatment, and end of stigma in epilepsy. Epilepsia, 2019, 60, 1281-1292.	2.6	17
38	Harmonization of the pipeline for seizure detection to phenotype post-traumatic epilepsy in a preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 156, 106131.	0.8	24
39	Harmonization of pipeline for detection of HFOs in a rat model of post-traumatic epilepsy in preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 156, 106110.	0.8	15
40	Deficiency of urokinase-type plasminogen activator and its receptor affects social behavior and increases seizure susceptibility. Epilepsy Research, 2019, 151, 67-74.	0.8	12
41	Extracellular Vesicles as Diagnostics and Therapeutics for Structural Epilepsies. International Journal of Molecular Sciences, 2019, 20, 1259.	1.8	19
42	Harmonization of lateral fluid-percussion injury model production and post-injury monitoring in a preclinical multicenter biomarker discovery study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 151, 7-16.	0.8	28
43	Dynamics of clusterin protein expression in the brain and plasma following experimental traumatic brain injury. Scientific Reports, 2019, 9, 20208.	1.6	10
44	Acute Non-Convulsive Status Epilepticus after Experimental Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2019, 36, 1890-1907.	1.7	27
45	Precipitationâ€based extracellular vesicle isolation from rat plasma coâ€precipitate vesicleâ€free microRNAs. Journal of Extracellular Vesicles, 2019, 8, 1555410.	5.5	84
46	Informatics tools to assess the success of procedural harmonization in preclinical multicenter biomarker discovery study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 150, 17-26.	0.8	5
47	Harmonization of pipeline for preclinical multicenter plasma protein and miRNA biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Research, 2019, 149, 92-101.	0.8	17
48	Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Research, 2019, 150, 46-57.	0.8	25
49	Sushi repeatâ€containing protein Xâ€linked 2: A novel phylogenetically conserved hypothalamoâ€pituitary protein. Journal of Comparative Neurology, 2018, 526, 1806-1819.	0.9	4
50	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	2.6	206
51	Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury. Acta Neuropathologica Communications, 2018, 6, 17.	2.4	28
52	Preclinical common data elements (<scp>CDE</scp> s) for epilepsy: A joint <scp>ILAE</scp> / <scp>AES</scp> and <scp>NINDS</scp> translational initiative. Epilepsia Open, 2018, 3, 9-12.	1.3	57
53	Analytic Tools for Post-traumatic Epileptogenesis Biomarker Search in Multimodal Dataset of an Animal Model and Human Patients. Frontiers in Neuroinformatics, 2018, 12, 86.	1.3	28
54	A web-based application for generating 2D-unfolded cortical maps to analyze the location and extent of cortical lesions following traumatic brain injury in adult rats. Journal of Neuroscience Methods, 2018, 308, 330-336.	1.3	6

#	Article	IF	CITATIONS
55	miR-124-3p is a chronic regulator of gene expression after brain injury. Cellular and Molecular Life Sciences, 2018, 75, 4557-4581.	2.4	40
56	Algorithm for automatic detection of spontaneous seizures in rats with post-traumatic epilepsy. Journal of Neuroscience Methods, 2018, 307, 37-45.	1.3	18
57	Detection of Hyperexcitability by Functional Magnetic Resonance Imaging after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2708-2717.	1.7	22
58	T-cell infiltration into the perilesional cortex is long-lasting and associates with poor somatomotor recovery after experimental traumatic brain injury. Restorative Neurology and Neuroscience, 2018, 36, 485-501.	0.4	16
59	Unfolded Maps for Quantitative Analysis of Cortical Lesion Location and Extent after Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 459-474.	1.7	27
60	Common data elements and data management: Remedy to cure underpowered preclinical studies. Epilepsy Research, 2017, 129, 87-90.	0.8	35
61	Transcriptional profile of hippocampal dentate granule cells in four rat epilepsy models. Scientific Data, 2017, 4, 170061.	2.4	47
62	Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia, 2017, 58, 2013-2024.	2.6	45
63	Decreased levels of active <scp>uPA</scp> and <scp>KLK</scp> 8 assessed by [¹¹¹ In] <scp>MICA</scp> â€401 binding correlate with the seizure burden in an animal model of temporal lobe epilepsy. Epilepsia, 2017, 58, 1615-1625.	2.6	5
64	Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Research, 2017, 136, 18-34.	0.8	44
65	Common data elements for preclinical epilepsy research: Standards for data collection and reporting. A <scp>TASK</scp> 3 report of the <scp>AES</scp> / <scp>ILAE</scp> Translational Task Force of the ILAE. Epilepsia, 2017, 58, 78-86.	2.6	21
66	Dynamics of PDGFRÎ ² expression in different cell types after brain injury. Glia, 2017, 65, 322-341.	2.5	49
67	Generalized Seizures after Experimental Traumatic Brain Injury Occur at the Transition from Slow-Wave to Rapid Eye Movement Sleep. Journal of Neurotrauma, 2017, 34, 1482-1487.	1.7	31
68	WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia, 2017, 58, 315-330.	2.6	26
69	Epilepsy After Traumatic Brain Injury. , 2017, , 661-681.		11
70	Chronically dysregulated NOTCH1 interactome in the dentate gyrus after traumatic brain injury. PLoS ONE, 2017, 12, e0172521.	1.1	22
71	Meta-Analysis of MicroRNAs Dysregulated in the Hippocampal Dentate Gyrus of Animal Models of Epilepsy. ENeuro, 2017, 4, ENEURO.0152-17.2017.	0.9	23
72	Epilepsy in Models of Alzheimer's Disease. , 2017, , 1021-1030.		0

#	Article	IF	Citations
73	Ex Vivo Tracing of NMDA and GABA-A Receptors in Rat Brain After Traumatic Brain Injury Using ¹⁸ F-GE-179 and ¹⁸ F-GE-194 Autoradiography. Journal of Nuclear Medicine, 2016, 57, 1442-1447.	2.8	18
74	Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44 and S100a4 as Treatment Targets. Scientific Reports, 2016, 6, 31570.	1.6	60
75	Epileptogenesis after traumatic brain injury in Plaur- deficient mice. Epilepsy and Behavior, 2016, 60, 187-196.	0.9	17
76	Etiology matters – Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy. Scientific Reports, 2016, 6, 25668.	1.6	87
77	Implantable RF-coil with multiple electrodes for long-term EEG-fMRI monitoring in rodents. Journal of Neuroscience Methods, 2016, 274, 154-163.	1.3	15
78	Advances in the development of biomarkers for epilepsy. Lancet Neurology, The, 2016, 15, 843-856.	4.9	283
79	Development of epilepsy after ischaemic stroke. Lancet Neurology, The, 2016, 15, 185-197.	4.9	163
80	Traumatic Brain Injury Increases the Expression of Nos1, Aβ Clearance, and Epileptogenesis in APP/PS1 Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 7010-7027.	1.9	32
81	Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods, 2016, 260, 2-25.	1.3	93
82	Diffusion tensor imaging detects chronic microstructural changes in white and gray matter after traumatic brain injury in rat. Frontiers in Neuroscience, 2015, 9, 128.	1.4	64
83	Epilepsy priorities in Europe: A report of the <scp>ILAE</scp> â€ <scp>IBE</scp> Epilepsy Advocacy Europe Task Force. Epilepsia, 2015, 56, 1687-1695.	2.6	81
84	Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury. Neuropharmacology, 2015, 88, 122-133.	2.0	70
85	Epileptogenesis after traumatic brain injury in Plau-deficient mice. Epilepsy and Behavior, 2015, 51, 19-27.	0.9	19
86	Reduction of epileptiform activity by valproic acid in a mouse model of Alzheimer's disease is not long-lasting after treatment discontinuation. Epilepsy Research, 2015, 112, 43-55.	0.8	24
87	Epileptogenesis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022822.	2.9	227
88	Urokinase-type plasminogen activator deficiency has little effect on seizure susceptibility and acquired epilepsy phenotype but reduces spontaneous exploration in mice. Epilepsy and Behavior, 2015, 42, 117-128.	0.9	19
89	Diffusion tensor imaging of hippocampal network plasticity. Brain Structure and Function, 2015, 220, 781-801.	1.2	51
90	Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy. Brain Structure and Function, 2015, 220, 153-191.	1.2	108

#	Article	IF	CITATIONS
91	Decreased Resting Functional Connectivity after Traumatic Brain Injury in the Rat. PLoS ONE, 2014, 9, e95280.	1.1	54
92	Are Alterations in Transmitter Receptor and Ion Channel Expression Responsible for Epilepsies?. Advances in Experimental Medicine and Biology, 2014, 813, 211-229.	0.8	8
93	Preface. Progress in Brain Research, 2014, 214, xiii-xvii.	0.9	13
94	Posttraumatic epilepsy â€" Disease or comorbidity?. Epilepsy and Behavior, 2014, 38, 19-24.	0.9	41
95	Epilepsy Related to Traumatic Brain Injury. Neurotherapeutics, 2014, 11, 286-296.	2.1	120
96	Past and Present Definitions of Epileptogenesis and Its Biomarkers. Neurotherapeutics, 2014, 11, 231-241.	2.1	198
97	Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Research, 2014, 108, 653-665.	0.8	22
98	Neural ECM and epilepsy. Progress in Brain Research, 2014, 214, 229-262.	0.9	43
99	The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurology, The, 2014, 13, 949-960.	4.9	101
100	Gender issues in antiepileptogenic treatments. Neurobiology of Disease, 2014, 72, 224-232.	2.1	17
101	Urokinase-Type Plasminogen Activator Receptor Modulates Epileptogenesis in Mouse Model of Temporal Lobe Epilepsy. Molecular Neurobiology, 2013, 47, 914-937.	1.9	41
102	Epilepsy therapy development: Technical and methodologic issues in studies with animal models. Epilepsia, 2013, 54, 13-23.	2.6	44
103	Issues related to development of antiepileptogenic therapies. Epilepsia, 2013, 54, 35-43.	2.6	86
104	Epilepsy biomarkers. Epilepsia, 2013, 54, 61-69.	2.6	215
105	MRI Biomarkers for Post-Traumatic Epileptogenesis. Journal of Neurotrauma, 2013, 30, 1305-1309.	1.7	53
106	Monitoring Functional Impairment and Recovery after Traumatic Brain Injury in Rats by fMRI. Journal of Neurotrauma, 2013, 30, 546-556.	1.7	35
107	Development of Post-Traumatic Epilepsy after Controlled Cortical Impact and Lateral Fluid-Percussion-Induced Brain Injury in the Mouse. Journal of Neurotrauma, 2012, 29, 789-812.	1.7	160
108	Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53, 1868-1876.	2.6	82

#	Article	IF	CITATIONS
109	Detection of calcifications in vivo and ex vivo after brain injury in rat using SWIFT. NeuroImage, 2012, 61, 761-772.	2.1	39
110	New Insight on the Mechanisms of Epileptogenesis in the Developing Brain. Advances and Technical Standards in Neurosurgery, 2012, 39, 3-44.	0.2	20
111	Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia, 2012, 53, 571-582.	2.6	219
112	Molecular biomarkers of epileptogenesis. Biomarkers in Medicine, 2011, 5, 629-633.	0.6	35
113	Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neuroscience Letters, 2011, 497, 163-171.	1.0	51
114	Multimodal MRI assessment of damage and plasticity caused by status epilepticus in the rat brain. Epilepsia, 2011, 52, 57-60.	2.6	21
115	Magnetic Resonance Imaging of Regional Hemodynamic and Cerebrovascular Recovery after Lateral Fluid-Percussion Brain Injury in Rats. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 166-177.	2.4	64
116	Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurology, The, 2011, 10, 173-186.	4.9	490
117	Diffusion tensor MRI with tract-based spatial statistics and histology reveals undiscovered lesioned areas in kainate model of epilepsy in rat. Brain Structure and Function, 2011, 216, 123-135.	1.2	50
118	Spontaneous epileptiform discharges in a mouse model of Alzheimer's disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Research, 2011, 94, 75-85.	0.8	96
119	Posttraumatic epilepsy. Current Opinion in Neurology, 2010, 23, 183-188.	1.8	64
120	Urokinase-type plasminogen activator regulates neurodegeneration and neurogenesis but not vascular changes in the mouse hippocampus after status epilepticus. Neurobiology of Disease, 2010, 37, 692-703.	2.1	19
121	Association of the severity of cortical damage with the occurrence of spontaneous seizures and hyperexcitability in an animal model of posttraumatic epilepsy. Epilepsy Research, 2010, 90, 47-59.	0.8	72
122	Therapeutic approaches to epileptogenesisâ€"Hope on the horizon. Epilepsia, 2010, 51, 2-17.	2.6	151
123	Association of Chronic Vascular Changes with Functional Outcome after Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2010, 27, 2203-2219.	1.7	76
124	Diffusion tensor MRI of axonal plasticity in the rat hippocampus. NeuroImage, 2010, 51, 521-530.	2.1	69
125	Elevated cerebral blood flow and vascular density in the amygdala after status epilepticus in rats. Neuroscience Letters, 2010, 484, 39-42.	1.0	17
126	Amyloid \hat{I}^2 -Induced Neuronal Hyperexcitability Triggers Progressive Epilepsy. Journal of Neuroscience, 2009, 29, 3453-3462.	1.7	545

#	Article	IF	CITATIONS
127	Research priorities in epilepsy for the next decadeâ€"A representative view of the European scientific community: Summary of the ILAE Epilepsy Research Workshop, Brussels, 17â€"18 January 2008. Epilepsia, 2009, 50, 571-578.	2.6	52
128	From traumatic brain injury to posttraumatic epilepsy: What animal models tell us about the process and treatment options. Epilepsia, 2009, 50, 21-29.	2.6	131
129	Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat — 11Âmonths follow-up. Experimental Neurology, 2009, 215, 29-40.	2.0	72
130	Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat. Experimental Neurology, 2009, 217, 154-164.	2.0	45
131	Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy and Behavior, 2009, 14, 16-25.	0.9	262
132	Quantitative MRI predicts long-term structural and functional outcome after experimental traumatic brain injury. Neurolmage, 2009, 45, 1-9.	2.1	97
133	Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain, 2008, 131, 1506-1515.	3.7	146
134	Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Brain, 2007, 130, 3155-3168.	3.7	129
135	Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Experimental Neurology, 2007, 205, 501-505.	2.0	149
136	Epileptogenesis in Experimental Models. Epilepsia, 2007, 48, 13-20.	2.6	222
137	The novel antiepileptic agent RWJ-333369-A, but not its analog RWJ-333369, reduces regional cerebral edema without affecting neurobehavioral outcome or cell death following experimental traumatic brain injury. Restorative Neurology and Neuroscience, 2007, 25, 77-90.	0.4	8
138	Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo. Neurolmage, 2006, 30, 130-135.	2.1	53
139	Epileptogenesis-related genes revisited. Progress in Brain Research, 2006, 158, 223-241.	0.9	73
140	Increased expression and activity of urokinase-type plasminogen activator during epileptogenesis. European Journal of Neuroscience, 2006, 24, 1935-1945.	1.2	36
141	Status Epilepticus in 12-day-old Rats Leads to Temporal Lobe Neurodegeneration and Volume Reduction: A Histologic and MRI Study. Epilepsia, 2006, 47, 479-488.	2.6	74
142	A long-term video-EEG and behavioral follow-up after endothelin-1 induced middle cerebral artery occlusion in rats. Epilepsy Research, 2006, 72, 25-38.	0.8	33
143	Animal Models of Post-Traumatic Epilepsy. Journal of Neurotrauma, 2006, 23, 241-261.	1.7	161
144	Status Epilepticus: Electrical Stimulation Models. , 2006, , 449-464.		8

#	Article	IF	CITATIONS
145	Posttraumatic Epilepsy Induced by Lateral Fluid-Percussion Brain Injury in Rats. , 2006, , 465-476.		21
146	Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Research, 2005, 63, 27-42.	0.8	117
147	Cystatin C modulates neurodegeneration and neurogenesis following status epilepticus in mouse. Neurobiology of Disease, 2005, 20, 241-253.	2.1	59
148	Epileptogenesis after Experimental Focal Cerebral Ischemia. Neurochemical Research, 2005, 30, 1529-1542.	1.6	39
149	Neurodegeneration and neuroprotective strategies after traumatic brain injury. Drug Discovery Today Disease Mechanisms, 2005, 2, 409-418.	0.8	10
150	Antiepileptic drugs in neuroprotection. Expert Opinion on Pharmacotherapy, 2004, 5, 777-798.	0.9	62
151	Progression of Brain Damage after Status Epilepticus and Its Association with Epileptogenesis: A Quantitative MRI Study in a Rat Model of Temporal Lobe Epilepsy. Epilepsia, 2004, 45, 1024-1034.	2.6	132
152	Atipamezole, an $\hat{l}\pm 2$ -adrenoceptor antagonist, has disease modifying effects on epileptogenesis in rats. Epilepsy Research, 2004, 61, 119-140.	0.8	48
153	Projections from the periamygdaloid cortex to the amygdaloid complex, the hippocampal formation, and the parahippocampal region: A PHA-L study in the rat. Hippocampus, 2003, 13, 922-942.	0.9	46
154	Long-term functional consequences of transient occlusion of the middle cerebral artery in rats:. Epilepsy Research, 2003, 54, 1-10.	0.8	52
155	cDNA profiling of epileptogenesis in the rat brain. European Journal of Neuroscience, 2003, 17, 271-279.	1.2	113
156	Selective changes in gamma-aminobutyric acid type A receptor subunits in the hippocampus in spontaneously seizing rats with chronic temporal lobe epilepsy. Neuroscience Letters, 2003, 349, 58-62.	1.0	24
157	Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Progress in Brain Research, 2002, 135, 67-83.	0.9	182
158	Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurology, The, 2002, 1, 173-181.	4.9	563
159	GABAA-Mediated Toxicity of Hippocampal Neurons In Vitro. Journal of Neurochemistry, 2002, 74, 2445-2454.	2.1	40
160	Upregulation of Cystatin C Expression in the Rat Hippocampus During Epileptogenesis in the Amygdala Stimulation Model of Temporal Lobe Epilepsy. Epilepsia, 2002, 43, 137-145.	2.6	40
161	Drug-mediated neuroprotection and antiepileptogenesis. Neurology, 2002, 59, S27-33.	1.5	71
162	Ex vivo MR microimaging of neuronal damage after kainate-induced status epilepticus in rat: Correlation with quantitative histology. Magnetic Resonance in Medicine, 2001, 46, 946-954.	1.9	20

#	Article	IF	CITATIONS
163	Projections from the amygdalo-piriform transition area to the amygdaloid complex: A PHA-l study in rat. Journal of Comparative Neurology, 2001, 432, 440-465.	0.9	35
164	Is mossy fiber sprouting present at the time of the first spontaneous seizures in rat experimental temporal lobe epilepsy?. Hippocampus, 2001, 11, 299-310.	0.9	98
165	Distribution of parvalbumin, calretinin, and calbindin-D28k immunoreactivity in the rat amygdaloid complex and colocalization with ?-aminobutyric acid. Journal of Comparative Neurology, 2000, 426, 441-467.	0.9	194
166	MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Research, 2000, 40, 155-170.	0.8	58
167	A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Research, 2000, 38, 177-205.	0.8	250
168	Association Between the Density of Mossy Fiber Sprouting and Seizure Frequency in Experimental and Human Temporal Lobe Epilepsy. Epilepsia, 2000, 41, S24-S29.	2.6	58
169	Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure: the Journal of the British Epilepsy Association, 2000, 9, 208-215.	0.9	53
170	Reciprocal Connections between the Amygdala and the Hippocampal Formation, Perirhinal Cortex, and Postrhinal Cortex in Rat: A Review. Annals of the New York Academy of Sciences, 2000, 911, 369-391.	1.8	756
171	Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat., 1999, 403, 229-260.		351
172	Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. Journal of Comparative Neurology, 1999, 403, 229-260.	0.9	5
173	Remodeling of neuronal circuitries in human temporal lobe epilepsy: Increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Annals of Neurology, 1998, 44, 923-934.	2.8	155
174	Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Research, 1998, 32, 233-253.	0.8	205
175	Tiagabine prevents seizures, neuronal damage and memory impairment in experimental status epilepticus. European Journal of Pharmacology, 1996, 299, 69-81.	1.7	63
176	Intrinsic connections of the rat amygdaloid complex: Projections originating in the accessory basal nucleus., 1996, 374, 291-313.		71
177	Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex. Journal of Comparative Neurology, 1995, 360, 185-212.	0.9	111
178	Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus. Journal of Comparative Neurology, 1995, 356, 288-310.	0.9	223
179	Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The amygdaloid complex. Journal of Comparative Neurology, 1993, 331, 14-36.	0.9	72
180	Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The hippocampal formation. Journal of Comparative Neurology, 1993, 331, 37-74.	0.9	74

Asla PitkÃ**¤**en

#	Article	IF	CITATION
181	Distribution of calbindin-D28kimmunoreactivity in the monkey temporal lobe: The amygdaloid complex. Journal of Comparative Neurology, 1993, 331, 199-224.	0.9	54
182	Amino Acid Levels in the Cerebrospinal Fluid of Newly Diagnosed Epileptic Patients: Effect of Vigabatrin and Carbamazepine Monotherapies. Journal of Neurochemistry, 1993, 60, 1244-1250.	2.1	55
183	Effect of Vigabatrin on the Electroencephalogram in Rats. Epilepsia, 1992, 33, 122-127.	2.6	20
184	Projections from the lateral nucleus to the basal nucleus of the amygdala: A light and electron microscopic PHA-L study in the rat. Journal of Comparative Neurology, 1992, 323, 586-601.	0.9	111
185	Distribution of reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) cells and fibers in the monkey amygdaloid complex. Journal of Comparative Neurology, 1991, 313, 326-348.	0.9	50
186	Administration of Vigabatrin (?-Vinyl-?-Aminobutyric Acid) Affects the Levels of Both Inhibitory and Excitatory Amino Acids in Rat Cerebrospinal Fluid. Journal of Neurochemistry, 1990, 55, 1870-1874.	2.1	27