## Oleg G Safonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6301970/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                               | IF        | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1  | Melting relations in the chloride–carbonate–silicate systems at high-pressure and the model for<br>formation of alkalic diamond–forming liquids in the upper mantle. Earth and Planetary Science<br>Letters, 2007, 253, 112-128.                                      | 4.4       | 91        |
| 2  | Precambrian ultra-hot orogenic factory: Making and reworking of continental crust. Tectonophysics, 2018, 746, 572-586.                                                                                                                                                | 2.2       | 49        |
| 3  | Links between Carbonatite and Kimberlite Melts in Chloride–Carbonate–Silicate Systems: Experiments<br>and Application to Natural Assemblages. Journal of Petrology, 2011, 52, 1307-1331.                                                                              | 2.8       | 40        |
| 4  | Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric<br>mantle: Implications for kimberlite melt composition and magma ascent. Chemical Geology, 2017, 455,<br>44-56.                                                  | 3.3       | 37        |
| 5  | Origin of Cl-bearing silica-rich melt inclusions in diamonds: Experimental evidence for an eclogite connection. Geology, 2010, 38, 1131-1134.                                                                                                                         | 4.4       | 29        |
| 6  | Phlogopite-Forming Reactions as Indicators of Metasomatism in the Lithospheric Mantle. Minerals<br>(Basel, Switzerland), 2019, 9, 685.                                                                                                                                | 2.0       | 28        |
| 7  | Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Kazakhstan:<br>Occurrence, composition and crystal-chemical characterization. American Mineralogist, 2003, 88,<br>464-468.                                                       | 1.9       | 26        |
| 8  | Interaction of Biotite–Amphibole Gneiss with H2O–CO2–(K, Na)Cl Fluids at 550 MPa and 750 and 800°Đ<br>Experimental Study and Applications to Dehydration and Partial Melting in the Middle Crust. Journal<br>of Petrology, 2014, 55, 2419-2456.                       | i:<br>2.8 | 25        |
| 9  | Alkali control of high-grade metamorphism and granitization. Geoscience Frontiers, 2014, 5, 711-727.                                                                                                                                                                  | 8.4       | 25        |
| 10 | Fluid-assisted interaction of peraluminous metapelites with trondhjemitic magma within the<br>Petronella shear-zone, Limpopo Complex, South Africa. Precambrian Research, 2014, 253, 114-145.                                                                         | 2.7       | 23        |
| 11 | Experimental and petrological constraints on local-scale interaction of biotite-amphibole gneiss with H2O-CO2-(K, Na)Cl fluids at middle-crustal conditions: Example from the Limpopo Complex, South Africa. Geoscience Frontiers, 2012, 3, 829-841.                  | 8.4       | 22        |
| 12 | Synthetic hypersilicic Cl-bearing mica in the phlogopite-celadonite join: A multimethodical<br>characterization of the missing link between di- and tri-octahedral micas at high pressures. American<br>Mineralogist, 2008, 93, 1429-1436.                            | 1.9       | 17        |
| 13 | Ultrahigh potassium content in the clinopyroxene structure: an X-ray single-crystal study. European<br>Journal of Mineralogy, 2002, 14, 929-934.                                                                                                                      | 1.3       | 15        |
| 14 | Composition and source of fluids in high-temperature graphite-bearing granitoids associated with<br>granulites: Examples from the Southern Marginal Zone, Limpopo Complex, South Africa. Gondwana<br>Research, 2018, 60, 129-152.                                     | 6.0       | 14        |
| 15 | Halogens in High-Grade Metamorphism. Springer Geochemistry, 2018, , 713-757.                                                                                                                                                                                          | 0.1       | 11        |
| 16 | The Neoarchaean Limpopo Orogeny: Exhumation and Regional-Scale Gravitational Crustal Overturn<br>Driven by a Granulite Diapir. Regional Geology Reviews, 2019, , 185-224.                                                                                             | 1.2       | 11        |
| 17 | Compressibility of synthetic potassium-rich clinopyroxene: In-situ high-pressure single-crystal X-ray<br>study. American Mineralogist, 2006, 91, 802-808.                                                                                                             | 1.9       | 9         |
| 18 | P–T Conditions, Mechanism and Timing of the Localized Melting of Metapelites from the Petronella<br>Shear Zone and Relationships with Granite Intrusions in the Southern Marginal Zone of the Limpopo<br>Belt, South Africa. Journal of Petrology, 2018, 59, 695-734. | 2.8       | 9         |

Oleg G Safonov

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Carbonate-silicate inclusions in garnet as evidence for a carbonate-bearing source for fluids in<br>leucocratic granitoids associated with granulites of the Southern Marginal Zone, Limpopo Complex,<br>South Africa. Gondwana Research, 2020, 77, 147-167. | 6.0 | 9         |
| 20 | Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow<br>Depth. Frontiers in Earth Science, 2021, 9, .                                                                                                         | 1.8 | 7         |
| 21 | Merwinite-structured phases as a potential host of alkalis in the upper mantle. Contributions To<br>Mineralogy and Petrology, 2015, 170, 1.                                                                                                                  | 3.1 | 6         |
| 22 | Garnet-bearing low-Sr and high-Sr Singelele leucogranite: A record of Neoarchean episodic melting in<br>collisional setting and Paleoproterozoic overprint in the Beit Bridge complex, southern Africa.<br>Lithos, 2018, 322, 67-86.                         | 1.4 | 5         |
| 23 | Thermal and Fluid Effects of Granitoid Intrusions on Granulite Complexes: Examples from the<br>Southern Marginal Zone of the Limpopo Complex, South Africa. Petrology, 2018, 26, 617-639.                                                                    | 0.9 | 2         |
| 24 | Carbon Isotope Characteristics as Evidence of an External Source of High-Temperature Granitoids in<br>Granulite Complexes. Doklady Earth Sciences, 2018, 483, 1515-1518.                                                                                     | 0.7 | 1         |
| 25 | Experimental diopsidite: Implications for natural diopsidite genesis through fluid-melt-mantle peridotite reaction. Mineralogy and Petrology, 2021, 115, 489-495.                                                                                            | 1.1 | 1         |
| 26 | Melt- to Shear-Controlled Exhumation of Granulites in Granite–Gneiss Domes: Petrological<br>Perspectives from Metapelite of the Neoarchean Ha-Tshanzi Structure, Central Zone, Limpopo Complex,<br>South Africa. Journal of Petrology, 2021, 62, .           | 2.8 | 1         |