Christophe Lemaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/630170/publications.pdf

Version: 2024-02-01

48 papers

2,934 citations

147726 31 h-index 206029 48 g-index

48 all docs 48 docs citations

times ranked

48

4982 citing authors

#	Article	IF	CITATIONS
1	Ferulic Acid, Pterostilbene, and Tyrosol Protect the Heart from ER-Stress-Induced Injury by Activating SIRT1-Dependent Deacetylation of eIF2α. International Journal of Molecular Sciences, 2022, 23, 6628.	1.8	14
2	Tebuconazole induces ROS-dependent cardiac cell toxicity by activating DNA damage and mitochondrial apoptotic pathway. Ecotoxicology and Environmental Safety, 2020, 204, 111040.	2.9	36
3	SIRT1 Protects the Heart from ER Stress-Induced Injury by Promoting eEF2K/eEF2-Dependent Autophagy. Cells, 2020, 9, 426.	1.8	41
4	Endoplasmic reticulum stress induces cardiac dysfunction through architectural modifications and alteration of mitochondrial function in cardiomyocytes. Cardiovascular Research, 2019, 115, 328-342.	1.8	29
5	Disturbed Fatty Acid Oxidation, Endoplasmic Reticulum Stress, and Apoptosis in Left Ventricle of Patients With Type 2 Diabetes. Diabetes, 2019, 68, 1924-1933.	0.3	54
6	Inducible Cardiac-Specific Deletion of Sirt1 in Male Mice Reveals Progressive Cardiac Dysfunction and Sensitization of the Heart to Pressure Overload. International Journal of Molecular Sciences, 2019, 20, 5005.	1.8	35
7	Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation. Journal of Hypertension, 2018, 36, 1164-1177.	0.3	48
8	Mitochondria: a central target for sex differences in pathologies. Clinical Science, 2017, 131, 803-822.	1.8	231
9	SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death and Differentiation, 2017, 24, 343-356.	5.0	159
10	Citrinin induces apoptosis in human HCT116 colon cancer cells through endoplasmic reticulum stress. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1230-1241.	1.1	14
11	Cobalamin and folate protect mitochondrial and contractile functions in a murine model of cardiac pressure overload. Journal of Molecular and Cellular Cardiology, 2017, 102, 34-44.	0.9	19
12	SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites \hat{l}_{\pm} - and \hat{l}_{\pm} -zearalenol through an autophagy-dependent pathway. Toxicology and Applied Pharmacology, 2017, 314, 82-90.	1.3	49
13	Crocin and quercetin prevent PAT-induced apoptosis in mammalian cells: Involvement of ROS-mediated ER stress pathway. Environmental Toxicology, 2016, 31, 1851-1858.	2.1	36
14	Crocin protects human embryonic kidney cells (HEK293) from \hat{l}_{\pm} - and \hat{l}_{\pm} -Zearalenol-induced ER stress and apoptosis. Environmental Science and Pollution Research, 2016, 23, 15504-15514.	2.7	19
15	Activation of ER stress and apoptosis by \hat{l}_{\pm} - and \hat{l}^2 -zearalenol in HCT116 cells, protective role of Quercetin. NeuroToxicology, 2016, 53, 334-342.	1.4	32
16	Combined effects of alternariols mixture on human colon carcinoma cells. Toxicology Mechanisms and Methods, 2015, 25, 56-62.	1.3	21
17	Patulin Induces Apoptosis through ROS-Mediated Endoplasmic Reticulum Stress Pathway. Toxicological Sciences, 2015, 144, 328-337.	1.4	105
18	Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress and Chaperones, 2015, 20, 927-938.	1.2	64

#	Article	IF	CITATIONS
19	InÂvitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon, 2014, 84, 1-6.	0.8	41
20	Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1356-1366.	1.9	64
21	Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell?. Frontiers in Physiology, 2013, 4, 102.	1.3	187
22	Cell death induced by the Alternaria mycotoxin Alternariol. Toxicology in Vitro, 2012, 26, 915-923.	1.1	46
23	Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. Food and Chemical Toxicology, 2012, 50, 1680-1689.	1.8	68
24	Increased expression of VDAC1 sensitizes carcinoma cells to apoptosis induced by DNA cross-linking agents. Biochemical Pharmacology, 2012, 83, 1172-1182.	2.0	32
25	Mechanism of Alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells. Toxicology, 2011, 290, 230-240.	2.0	37
26	Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1014-1027.	2.2	134
27	Molecular events involved in ochratoxin A induced mitochondrial pathway of apoptosis, modulation by Bclâ€2 family members. Environmental Toxicology, 2011, 26, 579-590.	2.1	26
28	Calcium Flux between the Endoplasmic Reticulum and Mitochondrion Contributes to Poliovirus-Induced Apoptosis. Journal of Virology, 2010, 84, 12226-12235.	1.5	52
29	The fourth isoform of the adenine nucleotide translocator inhibits mitochondrial apoptosis in cancer cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 623-629.	1.2	40
30	Role of the permeability transition pore complex in lethal inter-organelle crosstalk. Frontiers in Bioscience - Landmark, 2009, Volume, 3465.	3.0	22
31	Fusarial Toxin–Induced Toxicity in Cultured Cells and in Isolated Mitochondria Involves PTPC-Dependent Activation of the Mitochondrial Pathway of Apoptosis. Toxicological Sciences, 2009, 110, 363-375.	1.4	60
32	Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology, 2008, 254, 19-28.	2.0	159
33	Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 573-591.	2.2	132
34	Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 803-813.	2.2	196
35	Mechanisms of doxycycline-induced cytotoxicity on human bronchial epithelial cells. Frontiers in Bioscience - Landmark, 2006, 11, 3036.	3.0	18
36	Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1545-1559.	2.2	49

#	Article	IF	CITATIONS
37	Chemosensitization by Knockdown of Adenine Nucleotide Translocase-2. Cancer Research, 2006, 66, 9143-9152.	0.4	101
38	Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA. Journal of Cell Biology, 2006, 174, 985-996.	2.3	90
39	Caspase-9 can antagonize p53-induced apoptosis by generating a p76Rb truncated form of Rb. Oncogene, 2005, 24, 3297-3308.	2.6	20
40	Lipopolysaccharide Protects Primary B Lymphocytes from Apoptosis by Preventing Mitochondrial Dysfunction and Bax Translocation to Mitochondria. Infection and Immunity, 2004, 72, 3260-3266.	1.0	19
41	Bcl-2 can promote p53-dependent senescence versus apoptosis without affecting the G1/S transition. Biochemical and Biophysical Research Communications, 2002, 298, 282-288.	1.0	43
42	IL-4 inhibits apoptosis and prevents mitochondrial damage without inducing the switch to necrosis observed with caspase inhibitors. Cell Death and Differentiation, 1999, 6, 813-820.	5.0	22
43	Specific dual effect of cycloheximide on B lymphocyte apoptosis: involvement of CPP32/caspase-3. Biochemical Pharmacology, 1999, 58, 85-93.	2.0	23
44	Induction of apoptosis by dexamethasone in the B cell lineage. Immunopharmacology, 1998, 40, 67-76.	2.0	52
45	Age-associated modulation of apoptosis and activation in murine B lymphocytes. Mechanisms of Ageing and Development, 1998, 103, 285-299.	2.2	20
46	Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Letters, 1998, 425, 266-270.	1.3	159
47	UV irradiation of a B-cell hybridoma increases expression of alkaline phosphatase: involvement in apoptosis. Biochemistry and Cell Biology, 1997, 75, 783-788.	0.9	3
48	Expression of alkaline phosphatase by a B-cell hybridoma and its modulation during cell growth and apoptosis. Immunology Letters, 1995, 47, 163-170.	1.1	13