Débora Villaño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6301694/publications.pdf

Version: 2024-02-01

51 3,174 28 51 papers citations h-index g-index

53 53 5021 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A UHPLC/MS/MS method for the analysis of active and inactive forms of GLP-1 and GIP incretins in human plasma. Talanta, 2022, 236, 122806.	2.9	3
2	Alcohol Consumption by Italian and Spanish University Students in Relation to Adherence to the Mediterranean Diet and to the Food Neophobia: A Pilot Study. Healthcare (Switzerland), 2022, 10, 393.	1.0	5
3	Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Frontiers in Nutrition, 2022, 9, 809621.	1.6	40
4	Anti-Inflammatory and Antioxidant Capacity of a Fruit and Vegetable-Based Nutraceutical Measured by Urinary Oxylipin Concentration in a Healthy Population: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Antioxidants, 2022, 11, 1342.	2,2	4
5	Melatonin in Wine and Beer: Beneficial Effects. Molecules, 2021, 26, 343.	1.7	9
6	Stevia, sucralose and sucrose added to a maqui-Citrus beverage and their effects on glycemic response in overweight subjects: A randomized clinical trial. LWT - Food Science and Technology, 2021, 144, 111173.	2.5	16
7	Effects of a Fruit and Vegetable-Based Nutraceutical on Biomarkers of Inflammation and Oxidative Status in the Plasma of a Healthy Population: A Placebo-Controlled, Double-Blind, and Randomized Clinical Trial. Molecules, 2021, 26, 3604.	1.7	9
8	Biological effects of stevia, sucralose and sucrose in citrus–maqui juices on overweight subjects. Food and Function, 2021, 12, 8535-8543.	2.1	8
9	The Role of Brassica Bioactives on Human Health: Are We Studying It the Right Way?. Molecules, 2020, 25, 1591.	1.7	32
10	Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages. Molecules, 2020, 25, 371.	1.7	31
11	Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Nutraceuticals and Functional Foods 2019. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-2.	1.9	4
12	Bioavailability of broccoli sprouts in different human overweight populations. Journal of Functional Foods, 2019, 59, 337-344.	1.6	7
13	A comprehensive review on fruit <i>Aristotelia chilensis</i> (Maqui) for modern health: towards a better understanding. Food and Function, 2019, 10, 3057-3067.	2.1	14
14	Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition, 2019, 38, 745-752.	2.3	89
15	Broccoli for food and health – research and challenges. Acta Horticulturae, 2018, , 121-126.	0.1	1
16	Non-Provitamin A and Provitamin A Carotenoids as Immunomodulators: Recommended Dietary Allowance, Therapeutic Index, or Personalized Nutrition?. Oxidative Medicine and Cellular Longevity, 2018, 1-20.	1.9	104
17	High-performance liquid chromatography-diode array detector determination and availability of phenolic compounds in 10 genotypes of walnuts. International Journal of Food Properties, 2017, 20, 1074-1084.	1.3	23
18	Phenolic Profile and Biological Activities of the Pepino (Solanum muricatum) Fruit and Its Wild Relative S. caripense. International Journal of Molecular Sciences, 2016, 17, 394.	1.8	20

#	Article	IF	CITATIONS
19	Relationship between the Ingestion of a Polyphenol-Rich Drink, Hepcidin Hormone, and Long-Term Training. Molecules, 2016, 21, 1333.	1.7	15
20	Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates. Food Chemistry, 2016, 204, 314-319.	4.2	67
21	Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. Journal of Food Composition and Analysis, 2016, 46, 50-59.	1.9	26
22	Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radical Research, 2015, 49, 973-983.	1.5	26
23	Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion. British Journal of Nutrition, 2014, 111, 294-300.	1.2	38
24	Flavanâ€3â€ols, anthocyanins, and inflammation. IUBMB Life, 2014, 66, 745-758.	1.5	71
25	Evaluation of Latin-American fruits rich in phytochemicals with biological effects. Journal of Functional Foods, 2014, 7, 599-608.	1.6	108
26	Consumption of Mixed Fruit-juice Drink and Vitamin C Reduces Postprandial Stress Induced by a High Fat Meal in Healthy Overweight Subjects. Current Pharmaceutical Design, 2014, 20, 1020-1024.	0.9	44
27	Antioxidant and inflammatory response following high-fat meal consumption in overweight subjects. European Journal of Nutrition, 2013, 52, 1107-1114.	1.8	40
28	New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaÃ-and) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 38 43
29	High Fat Meal Increase of IL-17 is Prevented by Ingestion of Fruit Juice Drink in Healthy Overweight Subjects. Current Pharmaceutical Design, 2012, 18, 85-90.	0.9	51
30	Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prostaglandins and Other Lipid Mediators, 2012, 99, 79-86.	1.0	47
31	Effect of ingestion of dark chocolates with similar lipid composition and different cocoa content on antioxidant and lipid status in healthy humans. Food Chemistry, 2012, 132, 1305-1310.	4.2	15
32	Effect of acute consumption of oolong tea on antioxidant parameters in healthy individuals. Food Chemistry, 2012, 132, 2102-2106.	4.2	17
33	Biomarkers of antioxidant status following ingestion of green teas at different polyphenol concentrations and antioxidant capacity in human volunteers. Molecular Nutrition and Food Research, 2010, 54, S278-83.	1.5	31
34	Unfermented and fermented rooibos teas (Aspalathus linearis) increase plasma total antioxidant capacity in healthy humans. Food Chemistry, 2010, 123, 679-683.	4.2	40
35	Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radical Biology and Medicine, 2009, 46, 769-774.	1.3	101
36	Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of Food Composition and Analysis, 2008, 21, 282-290.	1.9	137

#	Article	IF	CITATIONS
37	Antioxidant Activity of Phenolic Compounds: From (i>In Vitro (i>Results to (i>In Vivo (i>Evidence. Critical Reviews in Food Science and Nutrition, 2008, 48, 649-671.	5.4	288
38	Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 2007, 71, 230-235.	2.9	671
39	Acute Intake of Red Wine does not Affect Antioxidant Enzymes Activities in Human Subjects. International Journal for Vitamin and Nutrition Research, 2006, 76, 291-298.	0.6	2
40	Sensory Evaluation of Sherry Vinegar: Traditional Compared to Accelerated Aging With Oak Chips. Journal of Food Science, 2006, 71, S238-S242.	1.5	13
41	Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Analytica Chimica Acta, 2006, 563, 101-108.	2.6	93
42	Influence of enological practices on the antioxidant activity of wines. Food Chemistry, 2006, 95, 394-404.	4.2	106
43	Redox Molecules and Cancer Prevention: The Importance of Understanding the Role of the Antioxidant Network. Nutrition and Cancer, 2006, 56, 232-240.	0.9	65
44	Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Analytica Chimica Acta, 2005, 538, 391-398.	2.6	172
45	Antioxidant Capacity of Plasma after Red Wine Intake in Human Volunteers. Journal of Agricultural and Food Chemistry, 2005, 53, 5024-5029.	2.4	46
46	Antioxidant activity of wines and relation with their polyphenolic composition. Analytica Chimica Acta, 2004, 513, 113-118.	2.6	217
47	Interaction of Yeasts with the Products Resulting from the Condensation Reaction between (+)-Catechin and Acetaldehyde. Journal of Agricultural and Food Chemistry, 2004, 52, 2376-2381.	2.4	28
48	The antioxidant activity of wines determined by the ABTS+ method: influence of sample dilution and time. Talanta, 2004, 64, 501-509.	2.9	99
49	Title is missing!. Grasas Y Aceites, 1998, 49, 347-351.	0.3	6
50	SOIL AND CLIMATE DETERMINE ANTIOXIDANT CAPACITY OF WALNUTS. Emirates Journal of Food and Agriculture, 0, , 557.	1.0	6
51	Ginger in the Prevention of Cardiovascular Diseases. , 0, , .		1