Barbara I Kazmierczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6301650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune recognition of <i>Pseudomonas aeruginosa</i> mediated by the IPAF/NLRC4 inflammasome. Journal of Experimental Medicine, 2007, 204, 3235-3245.	4.2	465
2	Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nature Genetics, 2014, 46, 1135-1139.	9.4	417
3	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	13.7	316
4	Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Current Opinion in Pediatrics, 2007, 19, 83-88.	1.0	199
5	Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Molecular Microbiology, 2006, 60, 1026-1043.	1.2	189
6	The Arginine Finger Domain of ExoT Contributes to Actin Cytoskeleton Disruption and Inhibition of Internalization of Pseudomonas aeruginosa by Epithelial Cells and Macrophages. Infection and Immunity, 2000, 68, 7100-7113.	1.0	174
7	FlhF Is Required for Swimming and Swarming in Pseudomonas aeruginosa. Journal of Bacteriology, 2006, 188, 6995-7004.	1.0	172
8	Innate immune responses to Pseudomonas aeruginosa infection. Microbes and Infection, 2011, 13, 1133-1145.	1.0	162
9	<i>Pseudomonas aeruginosa</i> Exhibits Sliding Motility in the Absence of Type IV Pili and Flagella. Journal of Bacteriology, 2008, 190, 2700-2708.	1.0	137
10	pIV, a Filamentous Phage Protein that Mediates Phage Export Across the Bacterial Cell Envelope, Forms a Multimer. Journal of Molecular Biology, 1994, 238, 187-198.	2.0	124
11	A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. Molecular Microbiology, 2004, 54, 1090-1103.	1.2	98
12	Compartment-Specific and Sequential Role of MyD88 and CARD9 in Chemokine Induction and Innate Defense during Respiratory Fungal Infection. PLoS Pathogens, 2015, 11, e1004589.	2.1	93
13	Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. Journal of Medical Microbiology, 2010, 59, 511-520.	0.7	89
14	Pseudomonas aeruginosa ExoT Acts In Vivo as a GTPase-Activating Protein for RhoA, Rac1, and Cdc42. Infection and Immunity, 2002, 70, 2198-2205.	1.0	88
15	NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. Journal of Experimental Medicine, 2016, 213, 657-665.	4.2	88
16	Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Current Opinion in Microbiology, 2015, 28, 78-82.	2.3	82
17	Inflammation: A Double-Edged Sword in the Response to <i>Pseudomonas aeruginosa</i> Infection. Journal of Innate Immunity, 2017, 9, 250-261.	1.8	82
18	Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Molecular Microbiology, 2013, 88, 655-663.	1.2	77

#	Article	IF	CITATIONS
19	Mutational Analysis of RetS, an Unusual Sensor Kinase-Response Regulator Hybrid Required for Pseudomonas aeruginosa Virulence. Infection and Immunity, 2006, 74, 4462-4473.	1.0	75
20	<i>Pseudomonas aeruginosa</i> OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Molecular Microbiology, 2010, 75, 76-91.	1.2	74
21	Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cellular Microbiology, 2001, 3, 223-236.	1.1	71
22	Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. PLoS Pathogens, 2017, 13, e1006594.	2.1	69
23	Airway Epithelial MyD88 Restores Control of <i>Pseudomonas aeruginosa</i> Murine Infection via an IL-1–Dependent Pathway. Journal of Immunology, 2011, 186, 7080-7088.	0.4	65
24	A Biosynthetic Strategy for Re-engineering theStaphylococcus aureusCell Wall with Non-native Small Molecules. ACS Chemical Biology, 2010, 5, 1147-1155.	1.6	63
25	Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma. Journal of Clinical Investigation, 2017, 127, 2739-2750.	3.9	61
26	Rho GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cellular Microbiology, 2001, 3, 85-98.	1.1	60
27	Type IV Pilus Assembly in Pseudomonas aeruginosa over a Broad Range of Cyclic di-GMP Concentrations. Journal of Bacteriology, 2012, 194, 4285-4294.	1.0	58
28	Modulation of flagellar rotation in surface-attached bacteria: A pathway for rapid surface-sensing after flagellar attachment. PLoS Pathogens, 2019, 15, e1008149.	2.1	57
29	Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa. Infection and Immunity, 2013, 81, 2043-2052.	1.0	54
30	The Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation. PLoS ONE, 2012, 7, e35499.	1.1	53
31	Epithelial Cell Polarity Alters Rho-GTPase Responses toPseudomonas aeruginosa. Molecular Biology of the Cell, 2004, 15, 411-419.	0.9	42
32	Distinct Contributions of Interleukin-1α (IL-1α) and IL-1β to Innate Immune Recognition of Pseudomonas aeruginosa in the Lung. Infection and Immunity, 2014, 82, 4204-4211.	1.0	38
33	The GTPase Activity of FlhF Is Dispensable for Flagellar Localization, but Not Motility, in Pseudomonas aeruginosa. Journal of Bacteriology, 2013, 195, 1051-1060.	1.0	37
34	Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7801-7806.	3.3	37
35	<i>In Situ</i> Structures of Polar and Lateral Flagella Revealed by Cryo-Electron Tomography. Journal of Bacteriology, 2019, 201, .	1.0	34
36	<i>In Vivo</i> Discrimination of Type 3 Secretion System-Positive and -Negative <i>Pseudomonas aeruginosa</i> via a Caspase-1-Dependent Pathway. Infection and Immunity, 2010, 78, 4744-4753.	1.0	30

#	Article	IF	CITATIONS
37	Chitinase 3-Like 1 (Chil1) Regulates Survival and Macrophage-Mediated Interleukin-1Î ² and Tumor Necrosis Factor Alpha during Pseudomonas aeruginosa Pneumonia. Infection and Immunity, 2016, 84, 2094-2104.	1.0	26
38	Host suppression of quorum sensing during catheter-associated urinary tract infections. Nature Communications, 2018, 9, 4436.	5.8	24
39	Hfq and sRNA 179 Inhibit Expression of the Pseudomonas aeruginosa cAMP-Vfr and Type III Secretion Regulons. MBio, 2020, 11, .	1.8	20
40	The Ability of Virulence Factor Expression by Pseudomonas aeruginosa to Predict Clinical Disease in Hospitalized Patients. PLoS ONE, 2012, 7, e49578.	1.1	20
41	An indirect enzyme-linked immunosorbent assay for rapid and quantitative assessment of Type III virulence phenotypes of Pseudomonas aeruginosa isolates. Annals of Clinical Microbiology and Antimicrobials, 2005, 4, 22.	1.7	18
42	A Conservative Amino Acid Mutation in the Master Regulator FleQ Renders Pseudomonas aeruginosa Aflagellate. PLoS ONE, 2014, 9, e97439.	1.1	18
43	A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. Journal of Bacteriology, 2020, 202, .	1.0	12
44	Rampant Cheating by Pathogens?. PLoS Pathogens, 2016, 12, e1005792.	2.1	10
45	Should I Stay or Should I Go? Pseudomonas Just Can't Decide. Cell Host and Microbe, 2019, 25, 5-7.	5.1	8
46	Neuromodulator-Mediated Phosphorylation of Specific Proteins in a Neurotumor Hybrid Cell Line (NCB-20). Journal of Neurochemistry, 1988, 50, 1287-1296.	2.1	7
47	New Twists and Turns in Bacterial Locomotion and Signal Transduction. Journal of Bacteriology, 2019, 201, .	1.0	7
48	Pearls of wisdom for aspiring physician-scientist residency applicants and program directors. JCI Insight, 2022, 7, .	2.3	5
49	A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. MBio, 2021, 12, e0083121.	1.8	4
50	Correction to A Biosynthetic Strategy for Re-engineering the <i>Staphylococcus aureus</i> Cell Wall with Non-native Small Molecules. ACS Chemical Biology, 2011, 6, 971-971.	1.6	2
51	Determining Phosphodiesterase Activity (Radioactive Assay). Methods in Molecular Biology, 2017, 1657, 279-283.	0.4	2
52	Determining Diguanylate Cyclase Activity (Radioactive Assay). Methods in Molecular Biology, 2017, 1657, 285-289.	0.4	2
53	Synthesis of [32P]-c-di-GMP for Diguanylate Cyclase and Phosphodiesterase Activity Determinations. Methods in Molecular Biology, 2017, 1657, 23-29.	0.4	1
54	The Enemy of my Enemy: Bacterial Competition in the Cystic Fibrosis Lung. Cell Host and Microbe, 2020, 28, 502-504.	5.1	1

55 Chronic versus Acute <i>Pseudomonas aeruginosa</i> Infection States. , 0, , 21-39. 0	#	Article	IF	CITATIONS
	55	Chronic versus Acute <i>Pseudomonas aeruginosa</i> Infection States. , 0, , 21-39.		0