## Sidney J L Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6301581/publications.pdf

Version: 2024-02-01

424 papers

14,912 citations

63 h-index 98 g-index

432 all docs 432 docs citations

432 times ranked

14061 citing authors

| #  | Article                                                                                                                                                                     | IF   | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lanthanideâ€Containing Lightâ€Emitting Organic–Inorganic Hybrids: A Bet on the Future. Advanced<br>Materials, 2009, 21, 509-534.                                            | 21.0 | 850       |
| 2  | Full-Color Phosphors from Europium(III)-Based Organosilicates. Advanced Materials, 2000, 12, 594-598.                                                                       | 21.0 | 313       |
| 3  | A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.<br>Carbohydrate Polymers, 2016, 153, 406-420.                                    | 10.2 | 250       |
| 4  | Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta, 2008, 471, 61-69.                                   | 2.7  | 234       |
| 5  | Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method. ACS Nano, 2016, 10, 7892-7900.                                                     | 14.6 | 223       |
| 6  | Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydrate Polymers, 2015, 128, 41-51.                    | 10.2 | 185       |
| 7  | Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films, 2008, 517, 1016-1020.                                              | 1.8  | 182       |
| 8  | Energy-Transfer Mechanisms and Emission Quantum Yields In Eu3+-Based Siloxane-Poly(oxyethylene) Nanohybrids. Chemistry of Materials, 2001, 13, 2991-2998.                   | 6.7  | 178       |
| 9  | Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes. Journal of Nanomaterials, 2011, 2011, 1-8.                                                      | 2.7  | 178       |
| 10 | Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering C, 2008, 28, 515-518.                                       | 7.3  | 166       |
| 11 | Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration. International Journal of Biomaterials, 2011, 2011, 1-8.                                            | 2.4  | 166       |
| 12 | Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydrate Polymers, 2008, 73, 74-82.                                               | 10.2 | 160       |
| 13 | Bacterial cellulose-collagen nanocomposite for bone tissue engineering. Journal of Materials Chemistry, 2012, 22, 22102.                                                    | 6.7  | 159       |
| 14 | Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. Journal of Materials Chemistry A, 2014, 2, 5580-5596.                  | 10.3 | 150       |
| 15 | Full-Color Phosphors from Amine-Functionalized Crosslinked Hybrids Lacking Metal Activator Ions. Advanced Functional Materials, 2001, 11, 111-115.                          | 14.9 | 148       |
| 16 | A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass. Scientific Reports, 2017, 7, 41596.                         | 3.3  | 138       |
| 17 | Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydrate Polymers, 2011, 83, 1279-1284.                                                                | 10.2 | 135       |
| 18 | Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polymer Degradation and Stability, 2007, 92, 205-210. | 5.8  | 133       |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Thermal characterization of bacterial cellulose–phosphate composite membranes. Journal of Thermal Analysis and Calorimetry, 2007, 87, 815-818.                                                                  | 3.6  | 126       |
| 20 | Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose, 2011, 18, 1285-1294.                                                                                          | 4.9  | 126       |
| 21 | Clustering of rare earth in glasses, aluminum effect: experiments and modeling. Journal of Non-Crystalline Solids, 2004, 348, 44-50.                                                                            | 3.1  | 122       |
| 22 | White light emission of Eu3+-based hybrid xerogels. Physical Review B, 1999, 60, 10042-10053.                                                                                                                   | 3.2  | 117       |
| 23 | Erbium-activated HfO2-based waveguides for photonics. Optical Materials, 2004, 25, 131-139.                                                                                                                     | 3.6  | 116       |
| 24 | Bacterial cellulose–silica organic–inorganic hybrids. Journal of Sol-Gel Science and Technology, 2008, 46, 363-367.                                                                                             | 2.4  | 116       |
| 25 | Theoretical intensities of 4f-4f transitions between stark levels of the Eu3+ ion in crystals. Journal of Physics and Chemistry of Solids, 1991, 52, 587-593.                                                   | 4.0  | 112       |
| 26 | Bacterial Cellulose/Collagen Hydrogel for Wound Healing. Materials Research, 2016, 19, 106-116.                                                                                                                 | 1.3  | 108       |
| 27 | Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5 Î⅓m application. Applied Physics Letters, 2002, 81, 28-30.                                                                                | 3.3  | 107       |
| 28 | Low optical loss planar waveguides prepared in an organic–inorganic hybrid system. Applied Physics Letters, 2000, 77, 3502-3504.                                                                                | 3.3  | 104       |
| 29 | Antimony oxide based glasses. Journal of Non-Crystalline Solids, 2001, 284, 110-116.                                                                                                                            | 3.1  | 103       |
| 30 | Study of Hybrid Silica-Polyethyleneglycol Xerogels by Eu3+ Luminescence Spectroscopy. Journal of Sol-Gel Science and Technology, 1998, 13, 427-432.                                                             | 2.4  | 102       |
| 31 | Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose.<br>Materials Letters, 2009, 63, 797-799.                                                                           | 2.6  | 102       |
| 32 | Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 2018, 179, 341-349.                                            | 10.2 | 94        |
| 33 | Bacterial Nanocellulose/MoS <sub>2</sub> Hybrid Aerogels as Bifunctional Adsorbent/Photocatalyst Membranes for <i>in-Flow</i> Water Decontamination. ACS Applied Materials & Interfaces, 2020, 12, 41627-41643. | 8.0  | 92        |
| 34 | Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions. Journal of Applied Physics, 2002, 92, 6337-6339.                                                     | 2.5  | 91        |
| 35 | Structural Studies of NaPO <sub>3</sub> â^'MoO <sub>3</sub> Glasses by Solid-State Nuclear Magnetic Resonance and Raman Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 10109-10117.                  | 2.6  | 89        |
| 36 | Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Industrial Crops and Products, 2017, 107, 13-19.                                         | 5.2  | 87        |

| #  | Article                                                                                                                                                                                                                        | IF           | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 37 | Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydrate Polymers, 2018, 179, 126-134.                                   | 10.2         | 87        |
| 38 | Structural studies of NaPO3–WO3glasses by solid state NMR and Raman spectroscopy. Journal of Materials Chemistry, 2006, 16, 3277-3284.                                                                                         | 6.7          | 86        |
| 39 | Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy. Journal of Non-Crystalline Solids, 1993, 159, 213-221.                                                                                       | 3.1          | 85        |
| 40 | Structural studies on TeO2–PbO glasses. Journal of Physics and Chemistry of Solids, 2001, 62, 1055-1060.                                                                                                                       | 4.0          | 85        |
| 41 | Structural study of tungstate fluorophosphate glasses by Raman and X-ray absorption spectroscopy. Journal of Solid State Chemistry, 2005, 178, 1533-1538.                                                                      | 2.9          | 85        |
| 42 | Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros, 2010, 20, 72-77.                                                                                                 | 0.7          | 84        |
| 43 | Coordination of Eu3+lons in Siliceous Nanohybrids Containing Short Polyether Chains and Bridging Urea Cross-links. Journal of Physical Chemistry B, 2001, 105, 3378-3386.                                                      | 2.6          | 83        |
| 44 | Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic. Journal of Luminescence, 2004, 110, 79-84.                                                                     | 3.1          | 82        |
| 45 | Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising<br>Biomaterial for Skin Wound Healing. Evidence-based Complementary and Alternative Medicine, 2013,<br>2013, 1-10.                    | 1.2          | 82        |
| 46 | Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sensors and Actuators B: Chemical, 2017, 238, 795-801.                                                                      | 7.8          | 81        |
| 47 | Redox Behavior of Molybdenum and Tungsten in Phosphate Glasses. Journal of Physical Chemistry B, 2008, 112, 4481-4487.                                                                                                         | 2.6          | 80        |
| 48 | Transparent composites prepared from bacterial cellulose and castor oil based polyurethane as substrates for flexible OLEDs. Journal of Materials Chemistry C, 2015, 3, 11581-11588.                                           | 5 <b>.</b> 5 | 78        |
| 49 | Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Materials Science and Engineering C, 2018, 89, 265-273.          | 7.3          | 76        |
| 50 | Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta, 2020, 218, 121153.                                                                       | 5 <b>.</b> 5 | 76        |
| 51 | Red–green–blue upconversion emission and energy-transfer between Tm 3+ and Er 3+ ions in tellurite glasses excited at 1.064 μm. Journal of Solid State Chemistry, 2003, 171, 278-281.                                          | 2.9          | 74        |
| 52 | Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Industrial Crops and Products, 2018, 122, 637-646.                              | 5.2          | 74        |
| 53 | Electro-precipitation of Fe3O4 nanoparticles in ethanol. Journal of Magnetism and Magnetic Materials, 2008, 320, 2311-2315.                                                                                                    | 2.3          | 73        |
| 54 | Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2253-2266. | 3.6          | 72        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synergistic effect of green coffee oil and synthetic sunscreen for health care application. Industrial Crops and Products, 2014, 52, 389-393.                                                                                                 | 5.2 | 72        |
| 56 | New tungstate fluorophosphate glasses. Journal of Non-Crystalline Solids, 2005, 351, 293-298.                                                                                                                                                 | 3.1 | 69        |
| 57 | Luminescence and non-radiative processes in lanthanide squarate hydrates. Journal of Physics and Chemistry of Solids, 1996, 57, 1727-1734.                                                                                                    | 4.0 | 68        |
| 58 | Structure and Luminescence of Eu3+-Doped Class I Siloxaneâ^'Poly(ethylene glycol) Hybrids. Chemistry of Materials, 2001, 13, 2818-2823.                                                                                                       | 6.7 | 68        |
| 59 | Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm. Journal of Applied Physics, 2003, 94, 5678-5681.                                                         | 2.5 | 68        |
| 60 | Bacterial cellulose–laponite clay nanocomposites. Polymer, 2011, 52, 157-163.                                                                                                                                                                 | 3.8 | 67        |
| 61 | Simple Green Approach to Reinforce Natural Rubber with Bacterial Cellulose Nanofibers.<br>Biomacromolecules, 2013, 14, 2667-2674.                                                                                                             | 5.4 | 67        |
| 62 | Structural and Luminescence Properties of Silica-Based Hybrids Containing New Silylated-Diketonato Europium(III) Complex. Journal of Physical Chemistry C, 2012, 116, 505-515.                                                                | 3.1 | 66        |
| 63 | Enhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic–inorganic hybrids. Journal of Luminescence, 2003, 104, 93-101.                                                                  | 3.1 | 65        |
| 64 | Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphate glasses. Journal of Applied Physics, 2003, 93, 1493-1497.                                                                                  | 2.5 | 65        |
| 65 | Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. International Journal of Biological Macromolecules, 2017, 103, 467-476.                                                             | 7.5 | 64        |
| 66 | Upconversion luminescence in transparent glass ceramics containing $\hat{l}^2$ -PbF2 nanocrystals doped with erbium. Journal of Alloys and Compounds, 2004, 375, 224-228.                                                                     | 5.5 | 61        |
| 67 | Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel. Journal of Materials Science, 2008, 43, 345-349.                                                                                                                                   | 3.7 | 61        |
| 68 | Bulk photochromism in a tungstate-phosphate glass: A new optical memory material?. Journal of Chemical Physics, 2006, 125, 161101.                                                                                                            | 3.0 | 60        |
| 69 | Mechanism of the Yb–Er energy transfer in fluorozirconate glass. Journal of Applied Physics, 2003, 93, 3873-3880.                                                                                                                             | 2.5 | 58        |
| 70 | Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. Journal of Biomedical Materials Research - Part A, 2015, 103, 3397-3406. | 4.0 | 57        |
| 71 | Structural organization and thermal properties of the Sb2O3–SbPO4glass system. Journal of Materials Chemistry, 2004, 14, 3398-3405.                                                                                                           | 6.7 | 56        |
| 72 | Optical characteristics of Er3+–Yb3+ doped SnO2 xerogels. Journal of Alloys and Compounds, 2002, 344, 217-220.                                                                                                                                | 5.5 | 54        |

| #  | Article                                                                                                                                                                                                                                           | IF   | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Materials Science and Engineering C, 2013, 33, 3994-4001.                                                         | 7.3  | 54        |
| 74 | Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers, 2016, 152, 841-849.                                                                                                                        | 10.2 | 54        |
| 75 | Solvent-controlled deposition of titania on silica spheres for the preparation of SiO2@TiO2 core@shell nanoparticles with enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 293-305. | 4.7  | 54        |
| 76 | Infrared-to-visible CW frequency upconversion in erbium activated silica–hafnia waveguides prepared by sol–gel route. Journal of Non-Crystalline Solids, 2003, 322, 306-310.                                                                      | 3.1  | 53        |
| 77 | BiossÃntese e recentes avanços na produção de celulose bacteriana. Ecletica Quimica, 2010, 35, 165-178.                                                                                                                                           | 0.5  | 53        |
| 78 | Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery. Journal of Nanoscience and Nanotechnology, 2015, 15, 865-874.                                                                                           | 0.9  | 53        |
| 79 | Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties. Journal of Materials Chemistry, 2005, 15, 3937.                                   | 6.7  | 52        |
| 80 | Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses. Journal of Applied Physics, 2007, 101, 123111.                                                                                | 2.5  | 52        |
| 81 | Broadband NIR emission in novel sol–gel Er3+-doped SiO2–Nb2O5 glass ceramic planar waveguides for photonic applications. Optical Materials, 2013, 35, 387-396.                                                                                    | 3.6  | 52        |
| 82 | Microwave synthesis of YAG:Eu by sol–gel methodology. Journal of Luminescence, 2007, 126, 378-382.                                                                                                                                                | 3.1  | 51        |
| 83 | Active planar waveguides based on sol–gel Er3+-doped SiO2–ZrO2 for photonic applications:<br>Morphological, structural and optical properties. Journal of Non-Crystalline Solids, 2008, 354,<br>4846-4851.                                        | 3.1  | 51        |
| 84 | Scale up the collection area of luminescent solar concentrators towards metreâ€length flexible waveguiding photovoltaics. Progress in Photovoltaics: Research and Applications, 2016, 24, 1178-1193.                                              | 8.1  | 51        |
| 85 | Er3+ and Eu3+ containing transparent glass ceramics in the system PbGeO3–PbF2–CdF2. Journal of Non-Crystalline Solids, 1999, 247, 87-91.                                                                                                          | 3.1  | 50        |
| 86 | UV and Temperature-Sensing Based on NaGdF <sub>4</sub> :Yb <sup>3+</sup> :Er <sup>3+</sup> @SiO <sub>2</sub> –Eu(tta) <sub>3</sub> . ACS Omega, 2017, 2, 2065-2071.                                                                               | 3.5  | 50        |
| 87 | SiO2–PbF2–CdF2 glasses and glass ceramics. Journal of Physics and Chemistry of Solids, 2003, 64, 95-105.                                                                                                                                          | 4.0  | 48        |
| 88 | Erbium Singleâ€Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations. Advanced Optical Materials, 2020, 8, 2001178.                                                                                              | 7.3  | 48        |
| 89 | Singlet Oxygen Generation Enhanced by Silver-Pectin Nanoparticles. Journal of Fluorescence, 2012, 22, 1633-1638.                                                                                                                                  | 2.5  | 47        |
| 90 | Random laser action from flexible biocellulose-based device. Journal of Applied Physics, 2014, 115, 083108.                                                                                                                                       | 2.5  | 47        |

| #   | Article                                                                                                                                                                                                                                                                                                     | IF  | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Tungstate fluorophosphate glasses as optical limiters. Journal of Applied Physics, 2002, 91, 10221.                                                                                                                                                                                                         | 2.5 | 45        |
| 92  | Structural and Spectroscopic Properties of Luminescent Er3+-Doped SiO2-Ta2O5 Nanocomposites. Journal of the American Ceramic Society, 2011, 94, 1230-1237.                                                                                                                                                  | 3.8 | 45        |
| 93  | Photopatternable Di-ureasilâ^'Zirconium Oxocluster Organicâ^'Inorganic Hybrids As Cost Effective Integrated Optical Substrates. Chemistry of Materials, 2008, 20, 3696-3705.                                                                                                                                | 6.7 | 44        |
| 94  | 1.5 $\hat{l}\frac{1}{4}$ m and visible up-conversion emissions in Er3+/Yb3+ co-doped tellurite glasses and optical fibers for photonic applications. Journal of Materials Chemistry, 2012, 22, 16540.                                                                                                       | 6.7 | 44        |
| 95  | Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064 μm. Journal of Chemical Physics, 2002, 116, 6772-6776.                                                                                                                                                                       | 3.0 | 43        |
| 96  | Infrared-to-visible frequency upconversion in Pr3+/Yb3+- and Er3+/Yb3+-codoped tellurite glasses. Journal of Alloys and Compounds, 2002, 344, 304-307.                                                                                                                                                      | 5.5 | 43        |
| 97  | Elaboration of boehmite nano-powders by spray-pyrolysis. Powder Technology, 2009, 190, 95-98.                                                                                                                                                                                                               | 4.2 | 43        |
| 98  | Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polimeros, 2013, 23, 135-142.                                                                                                                                                                                                 | 0.7 | 43        |
| 99  | Titania-based organic–inorganic hybrid planar waveguides. Journal of Alloys and Compounds, 2002, 344, 221-225.                                                                                                                                                                                              | 5.5 | 42        |
| 100 | Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 2011, 106, 703-709.                                                                                                                                            | 3.6 | 42        |
| 101 | Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass.<br>Journal of Non-Crystalline Solids, 2013, 378, 126-134.                                                                                                                                                    | 3.1 | 42        |
| 102 | Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm. Journal of Applied Physics, 2010, 107, .                                                                                                                                                  | 2.5 | 41        |
| 103 | Multicolor up conversion emission and color tunability in Yb3+/Tm3+/Ho3+ triply doped heavy metal oxide glasses. Optical Materials, 2011, 33, 1916-1920.                                                                                                                                                    | 3.6 | 41        |
| 104 | Enhanced photoactivity of BiVO4/Ag/Ag2O Z-scheme photocatalyst for efficient environmental remediation under natural sunlight and low-cost LED illumination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124946.                                                           | 4.7 | 41        |
| 105 | Flexible bacterial cellulose-based BC-SiO2-TiO2-Ag membranes with self-cleaning, photocatalytic, antibacterial and UV-shielding properties as a potential multifunctional material for combating infections and environmental applications. Journal of Environmental Chemical Engineering, 2021, 9, 104708. | 6.7 | 41        |
| 106 | Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression. Laser and Photonics Reviews, 2021, 15, 2100301.                                                                                                             | 8.7 | 41        |
| 107 | Synthesis and structural investigations on TeO2-PbF2-CdF2 glasses and transparent glass-ceramics. Journal of Physics and Chemistry of Solids, 2002, 63, 605-612.                                                                                                                                            | 4.0 | 40        |
| 108 | Title is missing!. Optical and Quantum Electronics, 2002, 34, 1151-1166.                                                                                                                                                                                                                                    | 3.3 | 40        |

| #   | Article                                                                                                                                                                                                                         | IF          | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 109 | Silk fibroin biopolymer films as efficient hosts for DFB laser operation. Journal of Materials Chemistry C, 2013, 1, 7181.                                                                                                      | <b>5.</b> 5 | 40        |
| 110 | Infrared to Visible Upâ€Conversion Emission in<br><scp><scp>Er</scp></scp> <sup>3+</sup> / <scp><scp>Yb</scp></scp> 3+ Codoped Fluoroâ€"Phosphate Glassâ€"Ceramics. Journal of the American Ceramic Society, 2013, 96, 825-832. | 3.8         | 40        |
| 111 | Energy transfer process in highly photoluminescent binuclear hydrocinnamate of europium, terbium and gadolinium containing 1,10-phenanthroline as ancillary ligand. Inorganica Chimica Acta, 2016, 441, 67-77.                  | 2.4         | 40        |
| 112 | Synthesis and factorial design applied to a novel chitosan/sodium polyphosphate nanoparticles via ionotropic gelation as an RGD delivery system. Carbohydrate Polymers, 2017, 157, 1695-1702.                                   | 10.2        | 40        |
| 113 | Energy upconversion luminescence in neodymium-doped tellurite glass. Journal of Alloys and Compounds, 2002, 346, 282-284.                                                                                                       | 5.5         | 39        |
| 114 | Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe. Journal of Physics Condensed Matter, 2008, 20, 145201.                                                   | 1.8         | 39        |
| 115 | Orange emission in Pr3+-doped fluoroindate glasses. Optical Materials, 2013, 35, 383-386.                                                                                                                                       | 3.6         | 39        |
| 116 | Inorganic-organic bio-nanocomposite films based on Laponite and Cellulose Nanofibers (CNF). Applied Clay Science, 2019, 168, 428-435.                                                                                           | 5.2         | 39        |
| 117 | Red, green, and blue upconversion luminescence in ytterbium-sensitized praseodymium-doped lead–cadmium–germanate glass. Optical Materials, 2004, 26, 271-274.                                                                   | 3.6         | 38        |
| 118 | Electro-optical properties of Er-doped SnO2 thin films. Journal of the European Ceramic Society, 2004, 24, 1857-1860.                                                                                                           | 5.7         | 38        |
| 119 | Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic. Journal of Non-Crystalline Solids, 2008, 354, 509-514.                                                                   | 3.1         | 38        |
| 120 | Crystallization of monoclinic WO3 in tungstate fluorophosphate glasses. Journal of Non-Crystalline Solids, 2009, 355, 441-446.                                                                                                  | 3.1         | 38        |
| 121 | Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. Journal of Materials Science, 2017, 52, 1919-1929.                                    | 3.7         | 38        |
| 122 | Sustainable luminescent solar concentrators based on organic–inorganic hybrids modified with chlorophyll. Journal of Materials Chemistry A, 2018, 6, 8712-8723.                                                                 | 10.3        | 38        |
| 123 | Eu3+ and Gd3+ spectroscopy in fluoroindate glasses. Chemical Physics Letters, 1994, 220, 214-218.                                                                                                                               | 2.6         | 37        |
| 124 | Optical properties and frequency upconversion fluorescence in a Tm3+ -doped alkali niobium tellurite glass. Journal of Applied Physics, 2003, 93, 3259-3263.                                                                    | 2.5         | 37        |
| 125 | Spectroscopic Study and Local Coordination of Polyphosphate Colloidal Systems. Langmuir, 2005, 21, 1776-1783.                                                                                                                   | 3.5         | 37        |
| 126 | Study of fluorine losses in oxyfluoride glasses. Journal of Non-Crystalline Solids, 2005, 351, 3804-3808.                                                                                                                       | 3.1         | 37        |

| #   | Article                                                                                                                                                                                                                                                                                                               | IF  | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Photochromic properties of tungstate-based glasses. Solid State Ionics, 2007, 178, 871-875.                                                                                                                                                                                                                           | 2.7 | 37        |
| 128 | Nonlinear Optical Properties of Tungsten Lead–Pyrophosphate Glasses Containing Metallic Copper Nanoparticles. Plasmonics, 2013, 8, 1667-1674.                                                                                                                                                                         | 3.4 | 37        |
| 129 | Unusual broadening of the NIR luminescence of Er3+-doped Nb2O5 nanocrystals embedded in silica host: Preparation and their structural and spectroscopic study for photonics applications. Materials Chemistry and Physics, 2014, 147, 751-760.                                                                        | 4.0 | 37        |
| 130 | Nano- and Macroscale Structural and Mechanical Properties of in Situ Synthesized Bacterial Cellulose/PEO- <i>b</i> -PEO- <i>b</i> -PEO Biocomposites. ACS Applied Materials & Interfaces, 2015, 7, 4142-4150.                                                                                                         | 8.0 | 36        |
| 131 | Local order around tungsten atoms in tungstate fluorophosphate glasses by X-ray absorption spectroscopy. Journal of Non-Crystalline Solids, 2005, 351, 3644-3648.                                                                                                                                                     | 3.1 | 35        |
| 132 | The Role of Bi <sub>2</sub> O <sub>3</sub> on the Thermal, Structural, and Optical Properties of Tungsten-Phosphate Glasses. Journal of Physical Chemistry B, 2013, 117, 408-414.                                                                                                                                     | 2.6 | 35        |
| 133 | Microwave-assisted synthesis of NaYF <sub>4</sub> :Yb <sup>3+</sup> /Tm <sup>3+</sup> upconversion particles with tailored morphology and phase for the design of UV/NIR-active NaYF <sub>4</sub> :Yb <sup>3+</sup> /Tm <sup>3+</sup> @TiO <sub>2</sub> core@shell photocatalysts. CrystEngComm. 2017. 19, 3465-3475. | 2.6 | 35        |
| 134 | Upconversion nanoparticle-decorated gold nanoshells for near-infrared induced heating and thermometry. Journal of Materials Chemistry B, 2017, 5, 7109-7117.                                                                                                                                                          | 5.8 | 35        |
| 135 | DETC-based bacterial cellulose bio-curatives for topical treatment of cutaneous leishmaniasis.<br>Scientific Reports, 2016, 6, 38330.                                                                                                                                                                                 | 3.3 | 34        |
| 136 | Determination of olive oil acidity by CE. Electrophoresis, 2007, 28, 3731-3736.                                                                                                                                                                                                                                       | 2.4 | 33        |
| 137 | Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of $Ho(III)$ , $Gd(III)$ and $Eu(III)$ with 2,5-thiophenedicarboxylate anion. Journal of Solid State Chemistry, 2015, 227, 68-78.                                             | 2.9 | 33        |
| 138 | Erbium-activated silica–zirconia planar waveguides prepared by sol–gel route. Thin Solid Films, 2008, 516, 3094-3097.                                                                                                                                                                                                 | 1.8 | 32        |
| 139 | NIR luminescent Er3+/Yb3+ co-doped SiO2–ZrO2 nanostructured planar and channel waveguides: Optical and structural properties. Materials Chemistry and Physics, 2012, 136, 120-129.                                                                                                                                    | 4.0 | 32        |
| 140 | Terbium(III) and dysprosium(III) 8-connected 3D networks containing 2,5-thiophenedicarboxylate anion: Crystal structures and photoluminescence studies. Polyhedron, 2012, 38, 149-156.                                                                                                                                | 2.2 | 32        |
| 141 | Orange pectin mediated growth and stability of aqueous gold and silver nanocolloids. Applied Surface Science, 2015, 341, 28-36.                                                                                                                                                                                       | 6.1 | 32        |
| 142 | Largeâ€Area Tunable Visibleâ€ŧoâ€Nearâ€Infrared Luminescent Solar Concentrators. Advanced Sustainable Systems, 2018, 2, 1800002.                                                                                                                                                                                      | 5.3 | 32        |
| 143 | Poole-Frenkel effect in Er doped SnO2thin films deposited by sol-gel-dip-coating. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 301-308.                                                                                                                                                   | 1.8 | 31        |
| 144 | Broadband NIR Emission in Sol–Gel Er <sup>3+</sup> -Activated SiO <sub>2</sub> –Ta <sub>2</sub> 5 Glass Ceramic Planar and Channel Waveguides for Optical Application. Journal of Nanoscience and Nanotechnology, 2011, 11, 2540-2544.                                                                                | 0.9 | 31        |

| #   | Article                                                                                                                                                                                                                                                                                | IF           | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 145 | Self-supported bacterial cellulose/boehmite organic–inorganic hybrid films. Journal of Sol-Gel<br>Science and Technology, 2012, 63, 211-218.                                                                                                                                           | 2.4          | 31        |
| 146 | APTES-Modified RE <sub>2</sub> O <sub>3</sub> :Eu <sup>3+</sup> Luminescent Beads: Structure and Properties. Langmuir, 2012, 28, 3962-3971.                                                                                                                                            | <b>3.</b> 5  | 31        |
| 147 | Visible to infrared energy conversion in Pr3+–Yb3+ co-doped fluoroindate glasses. Optical Materials, 2013, 35, 2085-2089.                                                                                                                                                              | 3.6          | 31        |
| 148 | Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose under Heterogeneous Condition. Journal of the Brazilian Chemical Society, 2015, , .                                                                                                                | 0.6          | 31        |
| 149 | Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films. Journal of Optics (United Kingdom), 2018, 20, 024001.                                                                                                                                       | 2.2          | 31        |
| 150 | Enhanced NIR-I emission from water-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles. Journal of Materials Chemistry C, 2018, 6, 4777-4785.                                                                                                               | 5 <b>.</b> 5 | 31        |
| 151 | SiO2-TiO2 doped with Er3+/Yb3+/Eu3+ photoluminescent material: A spectroscopy and structural study about potential application for improvement of the efficiency on solar cells. Materials Research Bulletin, 2018, 107, 295-307.                                                      | <b>5.</b> 2  | 31        |
| 152 | Development, characterization and pre-clinical trials of an innovative wound healing dressing based on propolis (EPP-AF®)-containing self-microemulsifying formulation incorporated in biocellulose membranes. International Journal of Biological Macromolecules, 2019, 136, 570-578. | 7.5          | 31        |
| 153 | Glasses in the SbPO4–WO3 system. Journal of Non-Crystalline Solids, 2007, 353, 1592-1597.                                                                                                                                                                                              | 3.1          | 30        |
| 154 | Er3+-doped Y2O3 obtained by polymeric precursor: Synthesis, structure and upconversion emission properties. Journal of Luminescence, 2014, 149, 333-340.                                                                                                                               | 3.1          | 30        |
| 155 | Silk fibroin as a biotemplate for hierarchical porous silica monoliths for random laser applications. Journal of Materials Chemistry C, 2018, 6, 2712-2723.                                                                                                                            | 5.5          | 30        |
| 156 | Sustainable Liquid Luminescent Solar Concentrators. Advanced Sustainable Systems, 2019, 3, 1800134.                                                                                                                                                                                    | <b>5.</b> 3  | 30        |
| 157 | Above bandgap induced photoexpansion and photobleaching in Ga–Ge–S based glasses. Journal of Non-Crystalline Solids, 2001, 284, 282-287.                                                                                                                                               | 3.1          | 29        |
| 158 | Synthesis and luminescence properties of water dispersible Eu <sup>3+</sup> -doped boehmite nanoparticles. Nanotechnology, 2007, 18, 455605.                                                                                                                                           | 2.6          | 29        |
| 159 | Influence of Ga incorporation on photoinduced phenomena in Ge–S based glasses. Journal of Non-Crystalline Solids, 2009, 355, 1884-1889.                                                                                                                                                | 3.1          | 29        |
| 160 | First crystal structures of lanthanide-hydrocinnamate complexes: Hydrothermal synthesis and photophysical studies. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 252, 69-76.                                                                                          | 3.9          | 29        |
| 161 | Organosilylated Complex [Eu(TTA) <sub>3</sub> (Bpy-Si)]: A Bifunctional Moiety for the Engeneering of Luminescent Silica-Based Nanoparticles for Bioimaging. Langmuir, 2013, 29, 5878-5888.                                                                                            | 3.5          | 29        |
| 162 | Color tunability in green, red and infra-red upconversion emission in Tm3+/Yb3+/Ho3+ co-doped CeO2 with potential application for improvement of efficiency in solar cells. Journal of Luminescence, 2015, 159, 223-228.                                                               | 3.1          | 29        |

| #   | Article                                                                                                                                                                                                                                                                                                        | IF                                      | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|
| 163 | Highly nonlinear Pb2P2O7-Nb2O5 glasses for optical fiber production. Journal of Non-Crystalline Solids, 2016, 443, 82-90.                                                                                                                                                                                      | 3.1                                     | 29        |
| 164 | Regenerated cellulose scaffolds: Preparation, characterization and toxicological evaluation. Carbohydrate Polymers, 2016, 136, 892-898.                                                                                                                                                                        | 10.2                                    | 29        |
| 165 | $1.5\hat{1}$ /4m Emission and infrared-to-visible frequency upconversion in Er+3/Yb+3-doped phosphoniobate glasses. Journal of Non-Crystalline Solids, 2006, 352, 3636-3641.                                                                                                                                   | 3.1                                     | 28        |
| 166 | Bacterial Cellulose from Glucanacetobacter xylinus: Preparation, Properties and Applications. , 2007, , 369-383.                                                                                                                                                                                               |                                         | 28        |
| 167 | Non-leachable highly luminescent ordered mesoporous SiO2spherical particles. Nanotechnology, 2010, 21, 155603.                                                                                                                                                                                                 | 2.6                                     | 28        |
| 168 | Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil. Polimeros, 2015, 25, 154-160.                                                                                                                                                                      | 0.7                                     | 28        |
| 169 | SnO2:Eu nanocrystallites in SnO2 monolithic xerogels. Chemical Physics Letters, 1992, 190, 64-66.                                                                                                                                                                                                              | 2.6                                     | 27        |
| 170 | Evaluation of laser level populations of erbium-doped glasses. Journal of Luminescence, 2007, 124, 200-206.                                                                                                                                                                                                    | 3.1                                     | 27        |
| 171 | Er <sup>3+</sup> -Based Diureasil Organicâ^Inorganic Hybrids. Journal of Physical Chemistry C, 2008, 112, 19346-19352.                                                                                                                                                                                         | 3.1                                     | 27        |
| 172 | Transparent bacterial cellulose–boehmite–epoxi-siloxane nanocomposites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 973-977.                                                                                                                                                               | 7.6                                     | 27        |
| 173 | Immunosensor Based on Immobilization of Antigenic Peptide NS5A-1 from HCV and Silk Fibroin in Nanostructured Films. Langmuir, 2013, 29, 3829-3834.                                                                                                                                                             | 3.5                                     | 27        |
| 174 | Transparent organic–inorganic nanocomposites membranes based on carboxymethylcellulose and synthetic clay. Industrial Crops and Products, 2015, 69, 415-423.                                                                                                                                                   | 5.2                                     | 27        |
| 175 | Preparation, Structural Characterization, and Electrical Conductivity of Highly Ion-Conducting Glasses and Glass Ceramics in the System Li <sub>1+<i>x</i></sub> Al <sub><i>x</i></sub> Sn <sub><i>y</i></sub> Ge <sub>2-(x+y)</sub> (PO <sub>4</sub> Iournal of Physical Chemistry C. 2016, 120, 14556-14567. | ) <sup>3</sup> 31<br>) <sub>3&lt;</sub> | /sub>.    |
| 176 | Silk fibroin organization induced by chitosan in layer-by-layer films: Application as a matrix in a biosensor. Carbohydrate Polymers, 2017, 155, 146-151.                                                                                                                                                      | 10.2                                    | 27        |
| 177 | Thermally stable SiO <sub>2</sub> @TiO <sub>2</sub> core@shell nanoparticles for application in photocatalytic self-cleaning ceramic tiles. Materials Advances, 2021, 2, 2085-2096.                                                                                                                            | 5.4                                     | 27        |
| 178 | Energy transfer between Tm3+ and Er3+ ions in a TeO2-based glass pumped at diode laser wavelength. Journal of Non-Crystalline Solids, 2007, 353, 94-101.                                                                                                                                                       | 3.1                                     | 26        |
| 179 | Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites. Journal of Thermal Analysis and Calorimetry, 2013, 114, 549-555.                                                                                                                                                      | 3.6                                     | 26        |
| 180 | Optical sensor platform based on cellulose nanocrystals (CNC) – 4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydrate Polymers, 2017, 168, 346-355.                                                                                                        | 10.2                                    | 26        |

| #   | Article                                                                                                                                                                                                                                                      | IF           | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 181 | Phosphotellurite glass and glass-ceramics with high TeO <sub>2</sub> contents: thermal, structural and optical properties. Dalton Transactions, 2019, 48, 6261-6272.                                                                                         | 3.3          | 26        |
| 182 | Dynamics of Tm–Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses. Journal of Applied Physics, 2004, 95, 5451-5463.                                                                                              | 2.5          | 25        |
| 183 | Thermal, structural and optical properties of new tungsten lead–pyrophosphate glasses. Optical Materials, 2011, 33, 1862-1866.                                                                                                                               | 3.6          | 25        |
| 184 | Spectroscopic study of lanthanide squarate hydrates. Journal of Alloys and Compounds, 1994, 216, 61-66.                                                                                                                                                      | 5 <b>.</b> 5 | 24        |
| 185 | Thermal–optical properties of Ga:La:S glasses measured by thermal lens technique. Journal of Non-Crystalline Solids, 1999, 247, 222-226.                                                                                                                     | 3.1          | 24        |
| 186 | Spectroscopic properties of polycarbonate and poly(methyl methacrylate) blends doped with europium (III) acetylacetonate. Journal of Luminescence, 2006, 117, 61-67.                                                                                         | 3.1          | 24        |
| 187 | Draft Genome Sequence of Komagataeibacter rhaeticus Strain AF1, a High Producer of Cellulose, Isolated from Kombucha Tea. Genome Announcements, 2014, 2, .                                                                                                   | 0.8          | 24        |
| 188 | Biocellulose-based flexible magnetic paper. Journal of Applied Physics, 2015, 117, 178734.                                                                                                                                                                   | 2.5          | 24        |
| 189 | Near infrared emission and multicolor tunability of enhanced upconversion emission from Er 3+ –Yb 3+ co-doped Nb 2 O 5 nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics. Journal of Luminescence, 2016, 170, 431-443. | 3.1          | 24        |
| 190 | Short range order evolution in the preparation of SnO2 based materials. Journal of Sol-Gel Science and Technology, 1997, 8, 261-268.                                                                                                                         | 2.4          | 23        |
| 191 | Raman scattering, differential scanning calorimetry and Nd3+ spectroscopy in alkali niobium tellurite glasses. Journal of Non-Crystalline Solids, 1999, 247, 58-63.                                                                                          | 3.1          | 23        |
| 192 | Efficient energy upconversion emission in Tm3+/Yb3+-codoped TeO2-based optical glasses excited at 1.064 $\hat{l}$ 4m. Journal of Applied Physics, 2001, 90, 6550-6552.                                                                                       | 2.5          | 23        |
| 193 | Aluminoxane–epoxi–siloxane hybrids waveguides. Journal of Non-Crystalline Solids, 2008, 354, 4795-4799.                                                                                                                                                      | 3.1          | 23        |
| 194 | Yb^3+, Tm^3+ and Ho^3+ triply-doped tellurite core-cladding optical fiber for white light generation. Optical Materials Express, 2011, 1, 1515.                                                                                                              | 3.0          | 23        |
| 195 | Reassessment of the potential applications of Eu3+-doped Y2O3 photoluminescent material in ceramic powder form. Ceramics International, 2014, 40, 15965-15971.                                                                                               | 4.8          | 23        |
| 196 | Er3+/Yb3+ Co-Activated Silica-Alumina Monolithic Xerogels. Journal of Sol-Gel Science and Technology, 2003, 26, 943-946.                                                                                                                                     | 2.4          | 22        |
| 197 | Sol–gel Eu3+/Tm3+ doped transparent glass–ceramic waveguides. Journal of Non-Crystalline Solids, 2004, 348, 180-184.                                                                                                                                         | 3.1          | 22        |
| 198 | Conductivity and 19F NMR in PbGeO3–PbF2–CdF2 glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2005, 351, 766-770.                                                                                                                              | 3.1          | 22        |

| #   | Article                                                                                                                                                                                                                                                                                                                 | IF  | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites. Polimeros, 2014, 24, 683-688.                                                                                                                                                                                     | 0.7 | 22        |
| 200 | Theoretical and experimental spectroscopic studies of the first highly luminescent binuclear hydrocinnamate of Eu(III), Tb(III) and Gd(III) with bidentate 2,2'-bipyridine ligand. Journal of Luminescence, 2014, 148, 307-316.                                                                                         | 3.1 | 22        |
| 201 | Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides. Journal of Applied Physics, 2014, 115, 193507.                                                                                                                                                                                  | 2.5 | 22        |
| 202 | Luminescence properties of Eu-complex formations into ordered mesoporous silica particles obtained by the spray pyrolysis process. Nanotechnology, 2015, 26, 335604.                                                                                                                                                    | 2.6 | 22        |
| 203 | Local Er(iii) environment in luminescent titanosilicates prepared from microporous precursorsElectronic supplementary information (ESI) available: Er LIII-edge k3-weighted EXAFS spectra and Fourier transforms. See http://www.rsc.org/suppdata/jm/b1/b107136j/. Journal of Materials Chemistry. 2002. 12. 1162-1168. | 6.7 | 21        |
| 204 | Erbium- and ytterbium-doped sol–gel SiO2–HfO2 crack-free thick films onto silica on silicon substrate. Journal of Non-Crystalline Solids, 2006, 352, 3463-3468.                                                                                                                                                         | 3.1 | 21        |
| 205 | Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose.<br>Journal of Thermal Analysis and Calorimetry, 2011, 105, 421-426.                                                                                                                                                 | 3.6 | 21        |
| 206 | Thermal and structural properties of tantalum alkali-phosphate glasses. Journal of Non-Crystalline Solids, 2014, 402, 44-48.                                                                                                                                                                                            | 3.1 | 21        |
| 207 | Transparent bacterial cellulose nanocomposites used as substrate for organic light-emitting diodes.<br>Journal of Materials Science: Materials in Electronics, 2019, 30, 16718-16723.                                                                                                                                   | 2.2 | 21        |
| 208 | Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 315-319.                                                                                                                                                                                                                                        | 2.4 | 20        |
| 209 | Visible and near-infrared luminescent Eu3+ or Er3+ doped laponite-derived xerogels and thick films: Structural and spectroscopic properties. Materials Chemistry and Physics, 2009, 113, 71-77.                                                                                                                         | 4.0 | 20        |
| 210 | Characterization and Application of Nanostructured Films Containing Au and TiO <sub>2</sub> Nanoparticles Supported in Bacterial Cellulose. Journal of Physical Chemistry C, 2015, 119, 340-349.                                                                                                                        | 3.1 | 20        |
| 211 | Visible up-conversion and near-infrared luminescence of Er3+/Yb3+ co-doped SbPO4-GeO2 glasses. Optical Materials, 2016, 57, 71-78.                                                                                                                                                                                      | 3.6 | 20        |
| 212 | Structural studies on lead–cadmium fluoride solid solutions. Solid State Ionics, 2002, 147, 135-139.                                                                                                                                                                                                                    | 2.7 | 19        |
| 213 | Spectroscopic investigation of a new hybrid glass formed by the interaction between croconate ion and calcium polyphosphate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2023-2028.                                                                                                | 3.9 | 19        |
| 214 | Structure and properties of Ti4+-ureasil organic-inorganic hybrids. Journal of the Brazilian Chemical Society, 2006, 17, 443-452.                                                                                                                                                                                       | 0.6 | 19        |
| 215 | Polymerization of photocurable commercial dental methacrylate-based composites. Journal of Thermal Analysis and Calorimetry, 2007, 87, 631-634.                                                                                                                                                                         | 3.6 | 19        |
| 216 | Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids. Journal of Sol-Gel Science and Technology, 2008, 48, 80-85.                                                                                                                                                                           | 2.4 | 19        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Thermal, Structural, and Crystallization Properties of New Tantalum Alkaliâ€Germanate Glasses. Journal of the American Ceramic Society, 2015, 98, 2086-2093.                                                     | 3.8 | 19        |
| 218 | N-(2-Hydroxy)-propyl-3-trimethylammonium, O-Mysristoyl Chitosan Enhances the Solubility and Intestinal Permeability of Anticancer Curcumin. Pharmaceutics, 2018, 10, 245.                                        | 4.5 | 19        |
| 219 | Optical properties of ZrO2, SiO2 and TiO2-SiO2 xerogels and coatings doped with Eu3+ and Eu2+. Materials Research, 1999, 2, 11-15.                                                                               | 1.3 | 18        |
| 220 | Photoluminescence of bulks and thin films of Eu3+-doped organic/inorganic hybrids. Journal of Alloys and Compounds, 2008, 451, 136-139.                                                                          | 5.5 | 18        |
| 221 | Structural, electronic and photoluminescence properties of Eu3+-doped CaYAlO4 obtained by using citric acid complexes as precursors. Optical Materials, 2016, 57, 45-55.                                         | 3.6 | 18        |
| 222 | Fabrication of Biocompatible, Functional, and Transparent Hybrid Films Based on Silk Fibroin and Epoxy Silane for Biophotonics. ACS Applied Materials & Interfaces, 2017, 9, 27905-27917.                        | 8.0 | 18        |
| 223 | Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. Biomedical Materials (Bristol), 2018, 13, 035009.                                                             | 3.3 | 18        |
| 224 | Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 615-620.                                                                                                                                 | 2.4 | 17        |
| 225 | Tm and Tm–Tb-doped germanate glasses for S-band amplifiers. Journal of Luminescence, 2008, 128, 51-59.                                                                                                           | 3.1 | 17        |
| 226 | Structural studies of AgPO3–MoO3 glasses using solid state NMR and vibrational spectroscopies. Journal of Non-Crystalline Solids, 2012, 358, 985-992.                                                            | 3.1 | 17        |
| 227 | Up-conversion mechanisms in Er3+-doped fluoroindate glasses under 1550†nm excitation for enhancing photocurrent of crystalline silicon solar cell. Journal of Luminescence, 2018, 200, 260-264.                  | 3.1 | 17        |
| 228 | IR-visible upconversion and thermal effects in Pr3+/Yb3+-codoped Ga2O3:La2S3chalcogenide glasses. Journal of Physics Condensed Matter, 2000, 12, 10003-10010.                                                    | 1.8 | 16        |
| 229 | Scandium fluorophosphate glasses: a structural approach. Comptes Rendus Chimie, 2002, 5, 915-920.                                                                                                                | 0.5 | 16        |
| 230 | Sol–gel entrapped cobalt complex. Materials Characterization, 2003, 50, 101-108.                                                                                                                                 | 4.4 | 16        |
| 231 | Ytterbium-induced energy-transfer upconversion enhancement in Nd3+/Pr3+-codoped PbGeO3–PbF2–CdF2 glass excited at 810nm. Journal of Luminescence, 2006, 116, 52-58.                                              | 3.1 | 16        |
| 232 | Spectroscopic studies on glassy Ni(II) and Co(II) polyphosphate coacervates. Materials Chemistry and Physics, 2010, 124, 547-551.                                                                                | 4.0 | 16        |
| 233 | Synthesis, structural characterization and photophysical properties of highly photoluminescent crystals of Eu(III), Tb(III) and Dy(III) with 2,5-thiophenedicarboxylate. Optical Materials, 2013, 35, 2357-2365. | 3.6 | 16        |
| 234 | Eu3+-doped SiO2–Gd2O3 prepared by the sol–gel process: structural and optical properties. Journal of Sol-Gel Science and Technology, 2015, 76, 260-270.                                                          | 2.4 | 16        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Optimized Synthesis of Silver Nanoparticles by Factorial Design with Application for the Determination of Melamine in Milk. Analytical Letters, 2017, 50, 829-841.                                                                             | 1.8 | 16        |
| 236 | Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties. Journal of Sol-Gel Science and Technology, 2019, 89, 2-11.                                                                                     | 2.4 | 16        |
| 237 | Spectroscopic characterization of SnO2 gels. Journal of Sol-Gel Science and Technology, 1994, 2, 263-267.                                                                                                                                      | 2.4 | 15        |
| 238 | Time dependence and energy-transfer mechanisms in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+. Journal of Non-Crystalline Solids, 2001, 284, 217-222.                                                | 3.1 | 15        |
| 239 | Spectroscopic properties of Er3+ in oxysulfide glasses. Journal of Alloys and Compounds, 2002, 344, 226-230.                                                                                                                                   | 5.5 | 15        |
| 240 | Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics. Journal of the Brazilian Chemical Society, 2002, 13, 200-206.                                                                        | 0.6 | 15        |
| 241 | Preparação de LiNbO3 e LiNbO3:Eu3+ pelo método dos precursores poliméricos. Quimica Nova, 2002, 25, 1067-1073.                                                                                                                                 | 0.3 | 15        |
| 242 | Distributed feedback multipeak laser emission in Rhodamine 6G doped organic-inorganic hybrids. Journal of Sol-Gel Science and Technology, 2006, 40, 359-363.                                                                                   | 2.4 | 15        |
| 243 | Preparation, thermal characterization, and DFT study of the bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 2014, 118, 205-215.                                                                                              | 3.6 | 15        |
| 244 | Characterization of Thin Carbon Films Produced by the Magnetron Sputtering Technique. Materials Research, 2016, 19, 669-672.                                                                                                                   | 1.3 | 15        |
| 245 | Construction of a series of rare earth metal-organic frameworks supported by thiophenedicarboxylate linker: Synthesis, characterization, crystal structures and near-infrared/visible luminescence. Inorganica Chimica Acta, 2016, 451, 41-51. | 2.4 | 15        |
| 246 | Broadened band C-telecom and intense upconversion emission of Er3+/Yb3+ co-doped CaYAlO4 luminescent material obtained by an easy route. Journal of Luminescence, 2016, 178, 226-233.                                                          | 3.1 | 15        |
| 247 | Silk fibroin-antigenic peptides-YVO 4:Eu 3+ nanostructured thin films as sensors for hepatitis C. Journal of Luminescence, 2016, 170, 375-379.                                                                                                 | 3.1 | 15        |
| 248 | Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker. Materials Science and Engineering C, 2022, 134, 112676.                                                                                    | 7.3 | 15        |
| 249 | Crystallization of ZrF4î—,LaF3î—,AlF3 glasses. Journal of Non-Crystalline Solids, 1997, 219, 176-181.                                                                                                                                          | 3.1 | 14        |
| 250 | Filmes de titânio-silÃcio preparados por "spin" e "dip-coating". Quimica Nova, 2003, 26, 674-677.                                                                                                                                              | 0.3 | 14        |
| 251 | Er <sup>3+</sup> doped phosphoniobate glasses and planar waveguides: structural and optical properties. Journal of Physics Condensed Matter, 2008, 20, 285224.                                                                                 | 1.8 | 14        |
| 252 | Rare Earth Doped SnO <sub>2</sub> Nanoscaled Powders and Coatings: Enhanced Photoluminescence in Water and Waveguiding Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 2433-2439.                                             | 0.9 | 14        |

| #   | Article                                                                                                                                                                                                         | IF  | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Bifunctional silica nanoparticles for the exploration of biofilms of <i>Pseudomonas aeruginosa </i> Biofouling, 2013, 29, 775-788.                                                                              | 2.2 | 14        |
| 254 | Structural and optical properties of Er3+ doped SiO2â€"Al2O3â€"GeO2 compounds prepared by a simple route. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 194, 21-26. | 3.5 | 14        |
| 255 | Spherical-shaped Y2O3:Eu3+ nanoparticles with intense photoluminescence emission. Ceramics International, 2015, 41, 1189-1195.                                                                                  | 4.8 | 14        |
| 256 | Photochromic dynamics of organic–inorganic hybrids supported on transparent and flexible recycled PET. Optical Materials, 2017, 66, 297-301.                                                                    | 3.6 | 14        |
| 257 | Structure and crystallization of lanthanum fluorozirconate glasses. Journal of Non-Crystalline Solids, 1996, 197, 8-18.                                                                                         | 3.1 | 13        |
| 258 | Tm3+ and Tm3+–Ho3+ doped fluorogermanate glasses for S-band amplifiers. Journal of Non-Crystalline Solids, 2005, 351, 1743-1746.                                                                                | 3.1 | 13        |
| 259 | Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G. Journal of Non-Crystalline Solids, 2005, 351, 1846-1849.                                                                            | 3.1 | 13        |
| 260 | Preparation and structural characterization of sodium polyphosphate coacervate as a precursor for optical materials. Materials Chemistry and Physics, 2016, 180, 114-121.                                       | 4.0 | 13        |
| 261 | Immunosensor for diagnosis of Alzheimer disease using amyloid-β 1–40 peptide and silk fibroin thin films. Materials Science and Engineering C, 2016, 68, 338-342.                                               | 7.3 | 13        |
| 262 | Photoluminescence and nonlinear optical phenomena in plasmonic random media—A review of recent works. Journal of Luminescence, 2016, 169, 492-496.                                                              | 3.1 | 13        |
| 263 | A new SERS substrate based on niobium lead-pyrophosphate glasses obtained by Ag+/Na+ ion exchange. Sensors and Actuators B: Chemical, 2018, 277, 347-352.                                                       | 7.8 | 13        |
| 264 | Femtosecond direct laser writing of silk fibroin optical waveguides. Journal of Materials Science: Materials in Electronics, 2019, 30, 16843-16848.                                                             | 2.2 | 13        |
| 265 | Development of Conformable Substrates for OLEDs Using Highly Transparent Bacterial Cellulose<br>Modified with Recycled Polystyrene. Advanced Sustainable Systems, 0, , 2000258.                                 | 5.3 | 13        |
| 266 | Crystallization of fluorindate and fluorogallate glasses. Journal of Non-Crystalline Solids, 1997, 219, 187-191.                                                                                                | 3.1 | 12        |
| 267 | Effects of self-assembly process of latex spheres on the final topology of macroporous silica. Journal of Colloid and Interface Science, 2005, 291, 448-464.                                                    | 9.4 | 12        |
| 268 | Erbium and ytterbium co-doped SiO2:GeO2 planar waveguide prepared by the sol–gel route using an alternative precursor. Journal of Sol-Gel Science and Technology, 2008, 45, 179-185.                            | 2.4 | 12        |
| 269 | Structural investigations of tungsten silver phosphate glasses by solid state NMR, vibrational and X-ray absorption near edge spectroscopies. Journal of Non-Crystalline Solids, 2011, 357, 2126-2131.          | 3.1 | 12        |
| 270 | Sleeving nanocelluloses by admicellar polymerization. Journal of Colloid and Interface Science, 2013, 408, 256-258.                                                                                             | 9.4 | 12        |

| #   | Article                                                                                                                                                                                                                                                                     | IF   | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Synthesis, characterization and evaluation of scintillation properties of Eu3+-doped Gd2O3 obtained using PEG as precursor. Journal of Alloys and Compounds, 2015, 648, 467-473.                                                                                            | 5.5  | 12        |
| 272 | Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses. Optical Materials, 2015, 49, 249-254.                                                                                                              | 3.6  | 12        |
| 273 | Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 2017, 81, 114-126.                                                                                                   | 2.4  | 12        |
| 274 | Luminescent Mesoporous Silica Nanohybrid Based on Drug Derivative Terbium Complex. Materials, 2019, 12, 933.                                                                                                                                                                | 2.9  | 12        |
| 275 | Enhanced photocatalytic activity of silver vanadate nanobelts in concentrated sunlight delivered through optical fiber bundle coupled with solar concentrator. SN Applied Sciences, 2020, 2, 1.                                                                             | 2.9  | 12        |
| 276 | Direct Femtosecond Laser Printing of Silk Fibroin Microstructures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50033-50038.                                                                                                                                         | 8.0  | 12        |
| 277 | Perovskite Quantum Dot Solar Cells: An Overview of the Current Advances and Future Perspectives.<br>Solar Rrl, 2021, 5, 2100205.                                                                                                                                            | 5.8  | 12        |
| 278 | Molecular dynamics simulations on devitrification: The PbF2 case. Journal of Chemical Physics, 2002, 117, 5366-5372.                                                                                                                                                        | 3.0  | 11        |
| 279 | Glass structure and ion dynamics of lead–cadmium fluorgermanate glasses. Journal of Chemical Physics, 2004, 120, 9638-9647.                                                                                                                                                 | 3.0  | 11        |
| 280 | Photo-induced effects in Ge25Ga10S65 glasses studied by XPS and XAS. Solid State Ionics, 2005, 176, 1403-1409.                                                                                                                                                              | 2.7  | 11        |
| 281 | Facile Synthesis of Tellurium Nanowires and Study of Their Third-Order Nonlinear Optical Properties.<br>Journal of the Brazilian Chemical Society, 2016, , .                                                                                                                | 0.6  | 11        |
| 282 | Structural investigation of nickel polyphosphate coacervate glass–ceramics. RSC Advances, 2016, 6, 91150-91156.                                                                                                                                                             | 3.6  | 11        |
| 283 | Thermal, structural and optical properties of new TeO2Sb2O3GeO2 ternary glasses. Optical Materials, 2016, 62, 95-103.                                                                                                                                                       | 3.6  | 11        |
| 284 | Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive response. Carbohydrate Polymers, 2016, 143, 188-197.                                                                                                                           | 10.2 | 11        |
| 285 | Optical and structural properties of neodymium-doped KPO3-MoO3 glasses. Journal of Non-Crystalline Solids, 2017, 458, 65-68.                                                                                                                                                | 3.1  | 11        |
| 286 | Luminescent Eu3+ doped Al6Ge2O13 crystalline compounds obtained by the sol gel process for photonics. Optical Materials, 2018, 75, 297-303.                                                                                                                                 | 3.6  | 11        |
| 287 | Eu( <scp>iii</scp> )-coordination polymer sub-micron fibers: material for selective and sensitive detection of Cu <sup>2+</sup> ions <i>via</i> competition between photoinduced electron transfer and energy transfer. Journal of Materials Chemistry C, 2018, 6, 153-161. | 5.5  | 11        |
| 288 | A review on polyphosphate coacervates—structural properties and bioapplications. Journal of Sol-Gel Science and Technology, 2020, 94, 531-543.                                                                                                                              | 2.4  | 11        |

| #   | Article                                                                                                                                                                                                                | IF  | Citations |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Self-Supported Smart Bacterial Nanocellulose–Phosphotungstic Acid Nanocomposites for Photochromic Applications. Frontiers in Materials, 2021, 8, .                                                                     | 2.4 | 11        |
| 290 | Characterization of the reversible photoinduced optical changes in Sb-based glasses. Journal of Non-Crystalline Solids, 2006, 352, 3535-3539.                                                                          | 3.1 | 10        |
| 291 | Amorphous manganese polyphosphates: preparation, characterization and incorporation of azo dyes. Journal of Sol-Gel Science and Technology, 2009, 50, 158-163.                                                         | 2.4 | 10        |
| 292 | Preparation and bactericidal effect of composites based on crosslinked copolymers containing silver nanoparticles. Polimeros, 2010, 20, 227-230.                                                                       | 0.7 | 10        |
| 293 | New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose, 2014, 21, 1361.                                                                                   | 4.9 | 10        |
| 294 | Bacterial cellulose/triethanolamine based ion-conducting membranes. Cellulose, 2014, 21, 1975.                                                                                                                         | 4.9 | 10        |
| 295 | Enhanced photochromic response of ormosil–phosphotungstate nanocomposite coatings doped with TiO2 nanoparticles. Journal of Sol-Gel Science and Technology, 2015, 76, 386-394.                                         | 2.4 | 10        |
| 296 | Polymerization Rate Modulated by Tetraarylborate Anion Structure: Direct Correlation of Hammett Substituent Constant with Polymerization Kinetics of 2-Hydroxyethyl Methacrylate. Macromolecules, 2018, 51, 7905-7913. | 4.8 | 10        |
| 297 | Study of the energy transfer process in rare earth-doped silk fibroin for future application in luminescent compounds. Journal of Luminescence, 2019, 205, 423-428.                                                    | 3.1 | 10        |
| 298 | Ultrasound-assisted synthesis of organotin compounds and their application as luminescent dye in silk fibroin scaffolds. Inorganica Chimica Acta, 2020, 505, 119490.                                                   | 2.4 | 10        |
| 299 | Upconversion and infrared emission of $Er3+/Yb3+$ co-doped SiO2-Gd2O3 obtained by sol-gel process. Processing and Application of Ceramics, 2015, 9, 23-31.                                                             | 0.8 | 10        |
| 300 | Crystal structures and luminescence properties of La3Zr4F25and α-LaZr3F15. Journal of Materials Chemistry, 1998, 8, 1043-1050.                                                                                         | 6.7 | 9         |
| 301 | Differential scanning calorimetry, x-ray diffraction and 19F nuclear magnetic resonance investigations of the crystallization of InF3-based glasses. Journal of Chemical Physics, 1998, 109, 2432-2436.                | 3.0 | 9         |
| 302 | Erbium-activated silica-titania planar waveguides prepared by rf-sputtering., 2001,,.                                                                                                                                  |     | 9         |
| 303 | Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 375-381.                                                                                                                                       | 2.4 | 9         |
| 304 | Structural study of thin films prepared from tungstate glass matrix by Raman and X-ray absorption spectroscopy. Applied Surface Science, 2008, 254, 5552-5556.                                                         | 6.1 | 9         |
| 305 | Production of defects in ZBLAN, ZBLAN:Tm3+ and ZBLAN:Cr3+ glasses by ultra-short pulses laser interaction. Journal of Physics and Chemistry of Solids, 2008, 69, 55-59.                                                | 4.0 | 9         |
| 306 | Er3+-doped germanate glasses for active waveguides prepared by Ag+/K+â†"Na+ ion-exchange. Journal of Non-Crystalline Solids, 2008, 354, 4743-4748.                                                                     | 3.1 | 9         |

| #   | Article                                                                                                                                                                                                                                                         | IF  | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Calcium polyphosphate coacervates: effects of thermal treatment. Journal of Sol-Gel Science and Technology, 2012, 63, 219-223.                                                                                                                                  | 2.4 | 9         |
| 308 | Structural and optical study of glasses in the TeO2-GeO2-PbF2 ternary system. Journal of Non-Crystalline Solids, 2017, 463, 158-162.                                                                                                                            | 3.1 | 9         |
| 309 | Precisely tailored shell thickness and Ln <sup>3+</sup> content to produce multicolor emission from Nd <sup>3+</sup> -sensitized Gd <sup>3+</sup> -based core/shell/shell UCNPs through bi-directional energy transfer. Nanoscale Advances, 2019, 1, 1936-1947. | 4.6 | 9         |
| 310 | Prussian blue as a co-catalyst for enhanced $Cr(vi)$ photocatalytic reduction promoted by titania-based nanoparticles and aerogels. New Journal of Chemistry, $0, , .$                                                                                          | 2.8 | 9         |
| 311 | Eu3+Âand Pb2+ÂSpectroscopy in Lead Germanate Glasses. Journal of the Brazilian Chemical Society, 1994, 5, 77-81.                                                                                                                                                | 0.6 | 9         |
| 312 | Sustainable Smart Tags with Twoâ€Step Verification for Anticounterfeiting Triggered by the Photothermal Response of Upconverting Nanoparticles. Advanced Photonics Research, 2022, 3, .                                                                         | 3.6 | 9         |
| 313 | Renewable energy for a green future: Electricity produced from efficient luminescent solar concentrators. Solar Energy Advances, 2022, 2, 100013.                                                                                                               | 3.0 | 9         |
| 314 | Non-isothermal study of the devitrification kinetics of fluoroindate glasses. Journal of Non-Crystalline Solids, 2000, 273, 76-80.                                                                                                                              | 3.1 | 8         |
| 315 | Sol-gel erbium-doped silica-hafnia planar and channel waveguides. , 2003, , .                                                                                                                                                                                   |     | 8         |
| 316 | Analysis of Er3+ incorporation in SnO2 by optical investigation. Brazilian Journal of Physics, 2006, 36, 270-273.                                                                                                                                               | 1.4 | 8         |
| 317 | Photoinduced effect in Ga–Ge–S based thin films. Applied Surface Science, 2006, 252, 8738-8744.                                                                                                                                                                 | 6.1 | 8         |
| 318 | Local order around rare earth ions during the devitrification of oxyfluoride glasses. Journal of Chemical Physics, 2008, 128, 244516.                                                                                                                           | 3.0 | 8         |
| 319 | Crystallization study of molybdate phosphate glasses by thermal analysis. Journal of Non-Crystalline Solids, 2009, 355, 2279-2284.                                                                                                                              | 3.1 | 8         |
| 320 | Enhanced photoluminescence features of Eu3+-modified di-ureasil-zirconium oxocluster organic–inorganic hybrids. Optical Materials, 2010, 32, 1587-1591.                                                                                                         | 3.6 | 8         |
| 321 | Optimization of photo-polymerized sol–gel monolithic stationary phases prepared in polyacrylate-coated fused-silica capillaries for capillary electrochromatography. Microchemical Journal, 2012, 100, 21-26.                                                   | 4.5 | 8         |
| 322 | Detection of factor VIII and D-dimer biomarkers for venous thromboembolism diagnosis using electrochemistry immunosensor. Talanta, 2020, 219, 121241.                                                                                                           | 5.5 | 8         |
| 323 | Eu3+ doped polyphosphate–aminosilane organic–inorganic hybrids. Journal of Alloys and Compounds, 2004, 374, 74-78.                                                                                                                                              | 5.5 | 7         |
| 324 | Preparation and characterization of erbium and ytterbium co-doped sol–gel SiO2:HfO2 films for planar waveguides. Optical Materials, 2007, 30, 600-607.                                                                                                          | 3.6 | 7         |

| #   | Article                                                                                                                                                                                                                                                                     | IF           | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 325 | Preparation and Characterization of New Glassy System As2P2S8â^'Ga2S3. Journal of Physical Chemistry B, 2008, 112, 4943-4947.                                                                                                                                               | 2.6          | 7         |
| 326 | Enhanced Eu <sup>3+</sup> Emission in Aqueous Phosphotungstate Colloidal Systems: Stabilization of Polyoxometalate Nanostructures. Langmuir, 2010, 26, 14170-14176.                                                                                                         | 3.5          | 7         |
| 327 | Bacterial Cellulose as a Template for Preparation of Hydrotalcite-Like Compounds. Journal of the Brazilian Chemical Society, $2014, \ldots$                                                                                                                                 | 0.6          | 7         |
| 328 | CELLULOSE NANOCRYSTALS FROM BACTERIAL CELLULOSE. Quimica Nova, 2015, , .                                                                                                                                                                                                    | 0.3          | 7         |
| 329 | Structural properties and visible emission of Eu3+-activated SiO2–ZnO–TiO2 powders prepared by a soft chemical process. Optical Materials, 2016, 62, 438-446.                                                                                                               | 3.6          | 7         |
| 330 | Ion-Pair Complexes of Pyrylium and Tetraarylborate as New Host–Guest Dyes: Photoinduced Electron Transfer Promoting Radical Polymerization. Journal of Physical Chemistry A, 2019, 123, 7374-7383.                                                                          | 2.5          | 7         |
| 331 | Formation and optical properties of new glasses within Sb2O3–WO3–ZnO ternary system. Journal of Materials Science: Materials in Electronics, 2019, 30, 16798-16805.                                                                                                         | 2.2          | 7         |
| 332 | Effect of silica coating on the catalytic activity of maghemite nanoparticles impregnated into mesoporous silica matrix. Materials Chemistry and Physics, 2019, 225, 145-152.                                                                                               | 4.0          | 7         |
| 333 | Thin films prepared from tungstate glass matrix. Applied Surface Science, 2008, 254, 2085-2089.                                                                                                                                                                             | 6.1          | 6         |
| 334 | Crystallization study of the (1â°'x)Sb2O3â€"(x)SbPO4 glass system. Materials Chemistry and Physics, 2008, 112, 1069-1073.                                                                                                                                                   | 4.0          | 6         |
| 335 | External polyacrylate-coating as alternative material for preparation of photopolymerized sol–gel monolithic column. Talanta, 2008, 76, 226-229.                                                                                                                            | 5 <b>.</b> 5 | 6         |
| 336 | COMPARATIVE ANALYSIS BETWEEN EXPERIMENTAL CHARACTERIZATION RESULTS AND NUMERICAL FDTD MODELING OF SELF-ASSEMBLED PHOTONIC CRYSTALS. Progress in Electromagnetics Research B, 2010, 23, 329-342.                                                                             | 1.0          | 6         |
| 337 | Refractive index changes in photochromic SbPO4–WO3 glass by exposure to band-gap radiation.<br>Journal of Non-Crystalline Solids, 2010, 356, 2360-2362.                                                                                                                     | 3.1          | 6         |
| 338 | Luminescence Enhancement of Carboxyl-Coated CdTe Quantum Dots by Silver Nanoparticles. Plasmonics, 2013, 8, 1147-1153.                                                                                                                                                      | 3.4          | 6         |
| 339 | Structure, characterization and near-infrared emission of a novel 6-connected uninodal 3D network of Nd(III) containing 2,5-thiophenedicarboxylate anion. Inorganic Chemistry Communication, 2013, 37, 66-70.                                                               | 3.9          | 6         |
| 340 | Infrared to Visible Up-conversion in Biocellulose–yttrium Vanadate Nanoparticle Composite<br>Membranes. Demonstration of Chloroaluminum Phthalocyanine Light Emission Under Up-converted<br>Light Excitation. Colloids and Interface Science Communications, 2014, 2, 6-10. | 4.1          | 6         |
| 341 | Photoluminescent and structural properties of ZnO containing Eu3+ using PEG as precursor. Journal of Luminescence, 2015, 167, 197-203.                                                                                                                                      | 3.1          | 6         |
| 342 | PWA-diureasils organic–inorganic hybrids. Photochromism and effect of the organic chain length. Optical Materials, 2015, 46, 64-69.                                                                                                                                         | 3.6          | 6         |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Multifunctional EuYVO 4 nanoparticles coated with mesoporous silica. Journal of Luminescence, 2016, 179, 197-202.                                                                                                                                                              | 3.1 | 6         |
| 344 | Luminescent multifunctional hybrids obtained by grafting of ruthenium complexes on mesoporous silica. Materials Letters, 2016, 174, 1-5.                                                                                                                                       | 2.6 | 6         |
| 345 | Photoluminescence of Ag+ and Agn+m in co-doped Pr3+/Yb3+ fluorophosphate glasses: tuning visible emission and energy transfer to Pr3+/Yb3+ ions through excitation in different silver species. Journal of Materials Science: Materials in Electronics, 2019, 30, 16878-16885. | 2.2 | 6         |
| 346 | PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing. Journal of Sol-Gel Science and Technology, 2020, 95, 693-709.                                                                                                                     | 2.4 | 6         |
| 347 | NMR Structural Study on the Asâ^'Pâ^'S Glassy System. Chemistry of Materials, 2007, 19, 5493-5498.                                                                                                                                                                             | 6.7 | 5         |
| 348 | Luminescent nano-composites generated from a spray. Journal of Non-Crystalline Solids, 2008, 354, 4860-4864.                                                                                                                                                                   | 3.1 | 5         |
| 349 | Mössbauer spectroscopy study of iron oxide nanoparticles obtained by spray pyrolysis. Hyperfine Interactions, 2009, 189, 159-166.                                                                                                                                              | 0.5 | 5         |
| 350 | Luminescent multifunctional biocellulose membranes. Proceedings of SPIE, 2011, , .                                                                                                                                                                                             | 0.8 | 5         |
| 351 | Zirconium-methacrylate oxoclusters as new hybrid materials for the modification of epoxy systems. Journal of Materials Science, 2015, 50, 2903-2913.                                                                                                                           | 3.7 | 5         |
| 352 | Bacterial Cellulose Membranes as a Potential Drug Delivery System for Photodynamic Therapy of Skin Cancer. Journal of the Brazilian Chemical Society, $2016$ , , .                                                                                                             | 0.6 | 5         |
| 353 | Development of coverage and its evaluation in the treatment of chronic wounds. Investigacion Y Educacion En Enfermeria, 2017, 35, 330-339.                                                                                                                                     | 0.8 | 5         |
| 354 | Direct Femtosecond Laser Printing of PPV on Bacterial Celluloseâ€Based Paper for Flexible Organic Devices. Macromolecular Materials and Engineering, 2018, 303, 1800265.                                                                                                       | 3.6 | 5         |
| 355 | Embedding CoPt magnetic nanoparticles within a phosphate glass matrix. Journal of Alloys and Compounds, 2020, 848, 156576.                                                                                                                                                     | 5.5 | 5         |
| 356 | Structural studies in lead fluorogermanate and fluorosilicate glasses. Journal of Alloys and Compounds, 1992, 180, 117-124.                                                                                                                                                    | 5.5 | 4         |
| 357 | Spectroscopic studies of the Eu3+ and Er3+ ions in the fluorozirconate LaZr2F11 matrix. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 475-483.                                                                                              | 3.9 | 4         |
| 358 | Local order around of germanium atoms in Ga10Ge25S65 glass by EXAFS. Journal of Non-Crystalline Solids, 2002, 304, 160-166.                                                                                                                                                    | 3.1 | 4         |
| 359 | Energy-transfer frequency upconversion in neodymium-sensitized praseodymium-doped PbGeO3–PbF2–CdF2 glass excited at 810nm. Journal of Alloys and Compounds, 2005, 394, 24-27.                                                                                                  | 5.5 | 4         |
| 360 | Optical properties and energy-transfer frequency upconversion of Yb3+-sensitized Ho3+- and Tb3+-doped lead-cadmium-germanate glass and glass ceramic., 2006, 6116, 145.                                                                                                        |     | 4         |

| #   | Article                                                                                                                                                                                                              | lF  | Citations |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Nanocomposites materials generated from a spray. Brazilian Journal of Physics, 2009, 39, 176-181.                                                                                                                    | 1.4 | 4         |
| 362 | Photoexpansion and photobleaching effects in oxysulfide thin films of the GeS2+Ga2O3 system. Physica B: Condensed Matter, 2011, 406, 4381-4386.                                                                      | 2.7 | 4         |
| 363 | Laser irradiation and thermal treatment inducing selective crystallization in Sb2O3–Sb2S3 glassy films. Physica B: Condensed Matter, 2015, 458, 67-72.                                                               | 2.7 | 4         |
| 364 | New organic-inorganic hybrid composites based on cellulose nanofibers and modified Laponite. Advanced Optical Technologies, 2018, 7, 327-334.                                                                        | 1.7 | 4         |
| 365 | Modification of Bacterial Cellulose Membrane with 1,4-Bis(triethoxysilyl)benzene: A Thorough Physical–Chemical Characterization Study. Journal of Physical Chemistry C, 2021, 125, 4498-4508.                        | 3.1 | 4         |
| 366 | Role of nanostructure in the behaviour of BiVO4–TiO2 nanotube photoanodes for solar water splitting in relation to operational conditions. Solar Energy Materials and Solar Cells, 2021, 223, 110980.                | 6.2 | 4         |
| 367 | Fabrication of Noncytotoxic Functional Siloxane-Coated Bacterial Cellulose Nanocrystals. ACS Applied Polymer Materials, 2022, 4, 2306-2313.                                                                          | 4.4 | 4         |
| 368 | Structure of Redispersible SnO2 Nanoparticles. Journal of Sol-Gel Science and Technology, 2003, 28, 45-50.                                                                                                           | 2.4 | 3         |
| 369 | Molecular dynamics simulation on devitrification: Isothermal devitrification and thermodynamics of PbF2 glasses. Journal of Chemical Physics, 2004, 121, 7413-7420.                                                  | 3.0 | 3         |
| 370 | Photo-induced transformations in chalcogenide composite layers. Journal of Non-Crystalline Solids, 2004, 348, 144-148.                                                                                               | 3.1 | 3         |
| 371 | Two-dimensional photonic crystals in antimony-based films fabricated by holography. Journal of Applied Physics, 2008, 103, 106101.                                                                                   | 2.5 | 3         |
| 372 | Glasses on the Nanoscale. , 2013, , 665-692.                                                                                                                                                                         |     | 3         |
| 373 | Tailoring the Structure and Luminescence of Nanostructured Er <sup>3+</sup> and Er <sup>3+</sup> /Yb <sup>3+</sup> â€Activated Hafniaâ€Based Systems. Journal of the American Ceramic Society, 2015, 98, 3136-3144.  | 3.8 | 3         |
| 374 | Simple and cost-effective method to obtain RE3+-doped Al2O3 for possible photonic applications. Ceramics International, 2015, 41, 10406-10414.                                                                       | 4.8 | 3         |
| 375 | Third-order nonlinearities and other properties of molybdenum lead-pyrophosphate glass. Optical Materials, 2015, 42, 298-302.                                                                                        | 3.6 | 3         |
| 376 | Whiteâ€Light and Yellow/Blue Photoluminescence Emission Based on Dy <sup>3+</sup> â€Doped SiO <sub>2</sub> –Gd <sub>2</sub> O <sub>3</sub> Composites. Journal of the American Ceramic Society, 2016, 99, 3025-3032. | 3.8 | 3         |
| 377 | Bifunctional Magnetic Luminescent Particles Based on Iron Oxide Nanoparticles Grafted with a Europium Silylated Bypiridine Tris(βâ€diketonate) Complex. ChemistrySelect, 2016, 1, 5923-5928.                         | 1.5 | 3         |
| 378 | NIR luminescence from erbium doped ( $100\hat{a}^{*}$ ' x)SiO 2: x ZnO powders obtained by soft chemical synthesis. Journal of Luminescence, 2016, 170, 663-670.                                                     | 3.1 | 3         |

| #   | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Low energy X-ray grating interferometry at the Brazilian Synchrotron. Optics Communications, 2017, 393, 195-198.                                                                                                                                                                                      | 2.1 | 3         |
| 380 | Cellulose Based Photonic Materials Displaying Direction Modulated Photoluminescence. Frontiers in Bioengineering and Biotechnology, 2021, 9, 617328.                                                                                                                                                  | 4.1 | 3         |
| 381 | Construção de câmara de luz ultravioleta para fotopolimerização de fases estacionárias monolÃticas.<br>Quimica Nova, 2008, 31, 2156-2158.                                                                                                                                                             | 0.3 | 3         |
| 382 | Enhancement of Optical Absorption, Photoluminescence and Raman Transitions in Bi2O3-GeO2Glasses with Embedded Silver Nanoparticles. Journal of the Brazilian Chemical Society, 2015, , .                                                                                                              | 0.6 | 3         |
| 383 | A UV-visible-NIR active smart photocatalytic system based on NaYbF <sub>4</sub> :Tm <sup>3+</sup> upconverting particles and Ag <sub>3</sub> PO <sub>4</sub> /H <sub>2</sub> O <sub>2</sub> for photocatalytic processes under light on/light off conditions. Materials Advances, 2022, 3, 2706-2715. | 5.4 | 3         |
| 384 | Absorption and emission spectroscopic parameters of Nd3+ and Eu3+ ions in their hexamethylphosphoramide complexes. Inorganica Chimica Acta, 1991, 179, 67-72.                                                                                                                                         | 2.4 | 2         |
| 385 | Inorganic nanoparticles in organic-inorganic hybrid hosts for planar waveguides. , 2002, , .                                                                                                                                                                                                          |     | 2         |
| 386 | Photoinduced effects in AsSP glasses. Physica Status Solidi (B): Basic Research, 2009, 246, 1866-1870.                                                                                                                                                                                              | 1.5 | 2         |
| 387 | Photoexpansion and photorefraction in oxysulphide glasses. Solid State Ionics, 2009, 180, 1491-1496.                                                                                                                                                                                                  | 2.7 | 2         |
| 388 | Magnetic Resonance and Conductivity Study of Lead–Cadmium Fluorosilicate Glasses and Glass-Ceramics. Journal of Physical Chemistry C, 2018, 122, 6288-6297.                                                                                                                                           | 3.1 | 2         |
| 389 | Bacterial cellulose growth on 3D acrylate-based microstructures fabricated by two-photon polymerization. JPhys Photonics, 2021, 3, 024003.                                                                                                                                                            | 4.6 | 2         |
| 390 | Monolayer of silica nanospheres assembled onto ITO-coated glass substrates by spin-coating. Nanotechnology, 2021, 32, 205603.                                                                                                                                                                         | 2.6 | 2         |
| 391 | Influência do pH na estabilidade dos coacervatos de prata como precursores vÃtreos. Ecletica Quimica, 2002, 27, 305-314.                                                                                                                                                                              | 0.5 | 2         |
| 392 | Rare earth doped synthetic opals and inverse opals. , 2002, 4804, 121.                                                                                                                                                                                                                                |     | 1         |
| 393 | Erbium-activate HfO 2 -based waveguides for photonics., 2003, 4829, 89.                                                                                                                                                                                                                               |     | 1         |
| 394 | Effects in the population inversion of 3H 4 level in Tm, Tm-Tb and Tm-Eu doped germanate glasses for amplifiers applications. , 2006, , .                                                                                                                                                             |     | 1         |
| 395 | Waveguide features in self-patternable amine functionalized organic- inorganic hybrids., 2007,,.                                                                                                                                                                                                      |     | 1         |
| 396 | Rhodamine 6G Encapsuled Mesoporous Silica Channels. Advances in Science and Technology, 2008, 55, 62-67.                                                                                                                                                                                              | 0.2 | 1         |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Eletrodo de pasta de carbono em minicavidade de contato sólido. Ecletica Quimica, 2011, 36, 183-204.                                                                                                                        | 0.5 | 1         |
| 398 | Organic–inorganic hybrids prepared by carboxylic acid solvolysis: Planar waveguides. Optical Materials, 2012, 34, 910-914.                                                                                                  | 3.6 | 1         |
| 399 | Role of the reactive atmosphere during the sol–gel synthesis on the enhancing of the emission quantum yield of urea cross-linked tripodal siloxane-based hybrids. Journal of Sol-Gel Science and Technology, 2013, 70, 227. | 2.4 | 1         |
| 400 | Biopolymer Random Laser Consisting of Rhodamine 6G and Silica Nanoparticles Incorporated to Bacterial Cellulose., 2012,,.                                                                                                   |     | 1         |
| 401 | Photoluminescence and Structural Analysis of Er3+/Yb3+/Tm3+ Triply Doped Gd2O3. Revista Virtual De Quimica, 2017, 9, 2257-2271.                                                                                             | 0.4 | 1         |
| 402 | NIR Luminescence from Sol-Gel Er3+Doped SiO2:GeO2Transparent Gels, Nanostructured Powders and Thin Films for Photonic Applications. Journal of the Brazilian Chemical Society, 2015, , .                                    | 0.6 | 1         |
| 403 | New Flexible and Transparent Solution-Based Germanium-Sulfide Polymeric Materials. Journal of the Brazilian Chemical Society, 2015, , .                                                                                     | 0.6 | 1         |
| 404 | New glasses in the system InF 3 -BaF 2 -ErPO 4. , 1998, , .                                                                                                                                                                 |     | 0         |
| 405 | Glasses containing lutetium fluoride. , 1998, , .                                                                                                                                                                           |     | 0         |
| 406 | Viscosity of fluoroindate glasses. , 1998, , .                                                                                                                                                                              |     | 0         |
| 407 | Transparent Er3+-activated lead fluorogermanate glass ceramics. , 2003, , .                                                                                                                                                 |     | 0         |
| 408 | Optical limiting behavior of tungstate fluorophosphate glasses. , 2003, 4829, 107.                                                                                                                                          |     | 0         |
| 409 | Red, green, and blue upconversion luminescence in ytterbium-sensitized praseodymium-doped lead-cadmium-germanate glass. , 2004, , .                                                                                         |     | 0         |
| 410 | Infrared-to-visible frequency upconversion in transparent glass ceramics containing trivalent-rare-earth-doped nanocrystals., 2004, 5350, 132.                                                                              |     | 0         |
| 411 | Efficient UV-visible upconversion luminescence and thermal effects in terbium-ytterbium codoped fluorogermanate vitroceramic. Proceedings of SPIE, 2008, , .                                                                | 0.8 | 0         |
| 412 | Frequency upconversion in Er3+ and Yb3+-doped zirconia and hafnia nanocrystals excited at 980 nm in the continuous-wave regime. , 2009, , .                                                                                 |     | 0         |
| 413 | Mössbauer spectroscopy study of iron oxide nanoparticles obtained by spray pyrolysis., 2009,, 159-166.                                                                                                                      |     | 0         |
| 414 | Efficient Distributed Feedback Dye Laser in Silk Fibroin Films. , 2012, , .                                                                                                                                                 |     | 0         |

| #   | Article                                                                                                                                                            | lF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Near Infrared Emission at 1000 nm from Nanostructured Pr3+/Yb3+Co-doped SiO2-Nb2O5for Solar Cell Application. Journal of the Brazilian Chemical Society, 2015, , . | 0.6 | O         |
| 416 | Bifunctional silica nanoparticles for the exploration of Pseudomonas aeruginosa biofilm., 2016,,.                                                                  |     | 0         |
| 417 | Concentration dependence of the infrared photoluminescence of Pr3+in fluoroindate glasses. , 2016, , .                                                             |     | O         |
| 418 | Photonic materials displaying direction modulated photoluminescence. , 2019, , .                                                                                   |     | 0         |
| 419 | Biopolymer-Metal Composites. , 2019, , 261-301.                                                                                                                    |     | O         |
| 420 | Donald R. Ulrich Award 2019. Journal of Sol-Gel Science and Technology, 2020, 95, 503-503.                                                                         | 2.4 | 0         |
| 421 | Shedding Light on Chemistry. Journal of the Brazilian Chemical Society, 2015, , .                                                                                  | 0.6 | O         |
| 422 | Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine. Journal of the Brazilian Chemical Society, 2015, , .           | 0.6 | 0         |
| 423 | GLASSY MATERIALS AND LIGHT: PART 1. Quimica Nova, 2016, , .                                                                                                        | 0.3 | O         |
| 424 | GLASSY MATERIALS AND LIGHT: PART 2. Quimica Nova, 2016, , .                                                                                                        | 0.3 | 0         |