Alexandria B Boehm

List of Publications by Citations

Source: https://exaly.com/author-pdf/6301501/alexandria-b-boehm-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

207 papers

9,346 citations

56 h-index 88 g-index

252 ext. papers

11,513 ext. citations

7.8 avg, IF

6.57 L-index

#	Paper	IF	Citations
207	Rapid water disinfection using vertically aligned MoS nanofilms and visible light. <i>Nature Nanotechnology</i> , 2016 , 11, 1098-1104	28.7	514
206	Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. <i>Environmental Microbiology</i> , 2008 , 10, 1068-79	5.2	278
205	Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. <i>Environmental Science & Environmental Science & En</i>	10.3	243
204	Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. <i>Water Research</i> , 2013 , 47, 6812-28	12.5	212
203	Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. <i>Environmental Science & Documental Science & DNA (eDNA) Shedding and Decay Rates for Three Marine Fish.</i>	10.3	170
202	Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. <i>Environmental Science & Environmental Science & Envir</i>	10.3	162
201	Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 2102-9	4.8	153
200	A sea change ahead for recreational water quality criteria. <i>Journal of Water and Health</i> , 2009 , 7, 9-20	2.2	142
199	Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California. <i>Environmental Science & Environmental Science & </i>	-80 ^{0.3}	139
198	Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. <i>Environmental Science & Environmental & E</i>	10.3	137
197	Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in southern California. <i>Environmental Science & Environmental & E</i>	10.3	137
196	Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1089-1122	4.3	131
195	Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. <i>Nano Letters</i> , 2013 , 13, 4288-93	11.5	130
194	Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. <i>Water Research</i> , 2009 , 43, 4929-39	12.5	130
193	Fecal contamination and diarrheal pathogens on surfaces and in soils among Tanzanian households with and without improved sanitation. <i>Environmental Science & Environmental S</i>	10.3	127
192	SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. <i>Environmental Science & Environmental Scien</i>	10.3	120
191	Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 1517-24	4.8	116

(2012-2004)

190	Groundwater discharge: potential association with fecal indicator bacteria in the surf zone. <i>Environmental Science & Environmental Science & Environm</i>	10.3	116
189	Engineered Infiltration Systems for Urban Stormwater Reclamation. <i>Environmental Engineering Science</i> , 2013 , 30, 437-454	2	109
188	Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. <i>PLoS ONE</i> , 2017 , 12, e0176343	3.7	107
187	Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. <i>Water Research</i> , 2013 , 47, 6897-908	12.5	106
186	Hands, water, and health: fecal contamination in Tanzanian communities with improved, non-networked water supplies. <i>Environmental Science & Environmental Science & Environme</i>	10.3	105
185	Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California. <i>Water Research</i> , 2011 , 45, 1752-62	12.5	103
184	Enterococcus species distribution among human and animal hosts using multiplex PCR. <i>Journal of Applied Microbiology</i> , 2010 , 109, 539-547	4.7	102
183	Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. <i>Water Research</i> , 2014 , 61, 288-96	12.5	100
182	Bacterial pathogens in Hawaiian coastal streamsassociations with fecal indicators, land cover, and water quality. <i>Water Research</i> , 2011 , 45, 3279-90	12.5	96
181	Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection. <i>Nano Letters</i> , 2014 , 14, 5603-8	11.5	91
180	Human health risk implications of multiple sources of faecal indicator bacteria in a recreational waterbody. <i>Water Research</i> , 2014 , 66, 254-264	12.5	90
179	Enterococci concentrations in diverse coastal environments exhibit extreme variability. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	90
178	Faecal indicator bacteria enumeration in beach sand: a comparison study of extraction methods in medium to coarse sands. <i>Journal of Applied Microbiology</i> , 2009 , 107, 1740-50	4.7	89
177	Escherichia coli removal in biochar-augmented biofilter: effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 11535-42	10.3	88
176	Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, U.S.A.). <i>Limnology and Oceanography</i> , 2010 , 55, 1105-1122	4.8	83
175	Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone. <i>Continental Shelf Research</i> , 2006 , 26, 269-282	2.4	82
174	Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	80
173	Occurrence and persistence of bacterial pathogens and indicator organisms in beach sand along the California coast. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 1733-45	4.8	79

172	Virus transfer between fingerpads and fomites. Journal of Applied Microbiology, 2010, 109, 1868-74	4.7	78
171	Human-Associated Fecal Quantitative Polymerase Chain Reaction Measurements and Simulated Risk of Gastrointestinal Illness in Recreational Waters Contaminated with Raw Sewage. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 270-275	11	75
170	Efficacy of waterless hand hygiene compared with handwashing with soap: a field study in Dar es Salaam, Tanzania. <i>American Journal of Tropical Medicine and Hygiene</i> , 2010 , 82, 270-8	3.2	75
169	Occurrence of norovirus in raw sewage - A systematic literature review and meta-analysis. <i>Water Research</i> , 2017 , 111, 366-374	12.5	74
168	Environmental Engineers and Scientists Have Important Roles to Play in Stemming Outbreaks and Pandemics Caused by Enveloped Viruses. <i>Environmental Science & Environmental Engineers and Scientists Have Important Roles to Play in Stemming Outbreaks and Pandemics Caused by Enveloped Viruses. <i>Environmental Science & Environmental Engineers & Enviro</i></i>	10.3	73
167	Swimmer risk of gastrointestinal illness from exposure to tropical coastal waters impacted by terrestrial dry-weather runoff. <i>Environmental Science & Environmental Science &</i>	10.3	73
166	Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater. <i>Environmental Science & Environmental Science & Environme</i>	10.3	71
165	Bacterial hand contamination among Tanzanian mothers varies temporally and following household activities. <i>Tropical Medicine and International Health</i> , 2011 , 16, 233-9	2.3	71
164	Regional public health cost estimates of contaminated coastal waters: a case study of gastroenteritis at southern California beaches. <i>Environmental Science & Environmental S</i>	-8 ^{0.3}	71
163	Evaluation of Filtration and DNA Extraction Methods for Environmental DNA Biodiversity Assessments across Multiple Trophic Levels. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	70
162	Performance of viruses and bacteriophages for fecal source determination in a multi-laboratory, comparative study. <i>Water Research</i> , 2013 , 47, 6929-43	12.5	68
161	Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai (Hawaii, USA). <i>Marine Pollution Bulletin</i> , 2010 , 60, 1376-82	6.7	67
160	Environmental DNA reveals seasonal shifts and potential interactions in a marine community. <i>Nature Communications</i> , 2020 , 11, 254	17.4	66
159	Can We Swim Yet? Systematic Review, Meta-Analysis, and Risk Assessment of Aging Sewage in Surface Waters. <i>Environmental Science & Environmental Scien</i>	10.3	66
158	Systematic Review and Meta-Analysis of the Persistence and Disinfection of Human Coronaviruses and Their Viral Surrogates in Water and Wastewater. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 544-553	11	64
157	Tidal forcing of enterococci at marine recreational beaches at fortnightly and semidiurnal frequencies. <i>Environmental Science & Environmental Science</i>	10.3	64
156	Cross-shelf transport at Huntington Beach. Implications for the fate of sewage discharged through an offshore ocean outfall. <i>Environmental Science & Environmental Science & </i>	10.3	64
155	Hands and water as vectors of diarrheal pathogens in Bagamoyo, Tanzania. <i>Environmental Science</i> & amp; Technology, 2013 , 47, 355-63	10.3	60

154	Persistence of marine fish environmental DNA and the influence of sunlight. PLoS ONE, 2017, 12, e0185	6 <u>0</u> 4 7 3	59
153	Genomic and phenotypic diversity of coastal Vibrio cholerae strains is linked to environmental factors. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 3705-14	4.8	56
152	An analytical model of enterococci inactivation, grazing, and transport in the surf zone of a marine beach. <i>Water Research</i> , 2005 , 39, 3565-78	12.5	55
151	Predicting water quality at Santa Monica Beach: evaluation of five different models for public notification of unsafe swimming conditions. <i>Water Research</i> , 2014 , 67, 105-17	12.5	54
150	Sources of Nutrients and Fecal Indicator Bacteria to Nearshore Waters on the North Shore of Kaua[i] (Hawai[i], USA). <i>Estuaries and Coasts</i> , 2008 , 31, 607-622	2.8	53
149	Sunlight inactivation of fecal indicator bacteria in open-water unit process treatment wetlands: Modeling endogenous and exogenous inactivation rates. <i>Water Research</i> , 2015 , 83, 282-92	12.5	52
148	Environmental Spread of New Delhi Metallo-Lactamase-1-Producing Multidrug-Resistant Bacteria in Dhaka, Bangladesh. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	51
147	Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. <i>Ecological Engineering</i> , 2017 , 102, 320-330	3.9	50
146	Occurrence of Host-Associated Fecal Markers on Child Hands, Household Soil, and Drinking Water in Rural Bangladeshi Households. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 393-398	11	50
145	Solar Inactivation of Enterococci and Escherichia coli in Natural Waters: Effects of Water Absorbance and Depth. <i>Environmental Science & Enp.</i> 7 (2016), 50, 5068-76	10.3	50
144	Effect of weathering on mobilization of biochar particles and bacterial removal in a stormwater biofilter. <i>Water Research</i> , 2015 , 85, 208-15	12.5	49
143	Wrack promotes the persistence of fecal indicator bacteria in marine sands and seawater. <i>FEMS Microbiology Ecology</i> , 2011 , 77, 40-9	4.3	49
142	Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during neap tides. <i>Limnology and Oceanography</i> , 2008 , 53, 1434-1445	4.8	49
141	Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. <i>Water Research</i> , 2013 , 47, 6839-48	12.5	48
140	Characterization of fecal concentrations in human and other animal sources by physical, culture-based, and quantitative real-time PCR methods. <i>Water Research</i> , 2013 , 47, 6873-82	12.5	48
139	Comparison of surface sampling methods for virus recovery from fomites. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 6918-25	4.8	48
138	Enterococci predictions from partial least squares regression models in conjunction with a single-sample standard improve the efficacy of beach management advisories. <i>Environmental Science & Environmental En</i>	10.3	48
137	Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters. <i>Water Research</i> , 2017 , 108, 106-114	12.5	47

136	Recommendations following a multi-laboratory comparison of microbial source tracking methods. <i>Water Research</i> , 2013 , 47, 6829-38	12.5	46
135	Multi-laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources. <i>Water Research</i> , 2013 , 47, 6883-96	12.5	46
134	Enteric pathogens in stored drinking water and on caregiver® hands in Tanzanian households with and without reported cases of child diarrhea. <i>PLoS ONE</i> , 2014 , 9, e84939	3.7	46
133	Ruminants Contribute Fecal Contamination to the Urban Household Environment in Dhaka, Bangladesh. <i>Environmental Science & Environmental Science & Environment & E</i>	10.3	45
132	Hand bacterial communities vary across two different human populations. <i>Microbiology (United Kingdom)</i> , 2014 , 160, 1144-1152	2.9	44
131	Mobilization and transport of naturally occurring enterococci in beach sands subject to transient infiltration of seawater. <i>Environmental Science & Environmental Science & E</i>	10.3	44
130	A model of exposure to rotavirus from nondietary ingestion iterated by simulated intermittent contacts. <i>Risk Analysis</i> , 2009 , 29, 617-32	3.9	44
129	Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. <i>Water Research</i> , 2019 , 164, 114898	12.5	42
128	Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides and traditional indicators. <i>Environmental Microbiology</i> , 2007 , 9, 2038	8- 4 9	42
127	Hand-to-mouth contacts result in greater ingestion of feces than dietary water consumption in Tanzania: a quantitative fecal exposure assessment model. <i>Environmental Science & Environmental Science</i>	10.3	41
126	Relationship and variation of qPCR and culturable Enterococci estimates in ambient surface waters are predictable. <i>Environmental Science & Environmental & En</i>	10.3	41
125	Detection and transformation of genome segments that differ within a coastal population of Vibrio cholerae strains. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 3695-704	4.8	41
124	Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources. <i>Water Research</i> , 2013 , 47, 6921-8	12.5	40
123	Mechanisms for photoinactivation of Enterococcus faecalis in seawater. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7776-85	4.8	39
122	Modeling Environmental DNA Transport in the Coastal Ocean Using Lagrangian Particle Tracking. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	37
121	Diurnal variation in Enterococcus species composition in polluted ocean water and a potential role for the enterococcal carotenoid in protection against photoinactivation. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 305-10	4.8	37
120	Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markersis it feasible?. <i>Water Research</i> , 2013 , 47, 6849-61	12.5	36
119	Effect of submarine groundwater discharge on bacterial indicators and swimmer health at Avalon Beach, CA, USA. <i>Water Research</i> , 2014 , 59, 23-36	12.5	35

(2016-2003)

118	Model of microbial transport and inactivation in the surf zone and application to field measurements of total coliform in Northern Orange County, California. <i>Environmental Science & Environmental Science</i>	10.3	35	
117	Detecting and enumerating soil-transmitted helminth eggs in soil: New method development and results from field testing in Kenya and Bangladesh. <i>PLoS Neglected Tropical Diseases</i> , 2017 , 11, e000552	2 ^{1.8}	34	
116	Diversity and transport of microorganisms in intertidal sands of the California coast. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 3943-51	4.8	34	
115	Marine Vertebrate Biodiversity and Distribution Within the Central California Current Using Environmental DNA (eDNA) Metabarcoding and Ecosystem Surveys. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	33	
114	Salmonella enterica diversity in central Californian coastal waterways. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 4199-209	4.8	31	
113	Scaling of SARS-CoV-2 RNA in Settled Solids from Multiple Wastewater Treatment Plants to Compare Incidence Rates of Laboratory-Confirmed COVID-19 in Their Sewersheds. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 398-404	11	31	
112	Predictors of Enteric Pathogens in the Domestic Environment from Human and Animal Sources in Rural Bangladesh. <i>Environmental Science & Environmental Science & Environment & Environmen</i>	10.3	30	
111	Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism. <i>Environmental Science & Exogenous Indirect Mechanism</i> . <i>Environmental Science & Exogenous Indirect Mechanism</i> .	10.3	29	
110	Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. <i>Water Research</i> , 2019 , 162, 456-470	12.5	28	
109	The effects of informational interventions on household water management, hygiene behaviors, stored drinking water quality, and hand contamination in peri-urban Tanzania. <i>American Journal of Tropical Medicine and Hygiene</i> , 2011 , 84, 184-91	3.2	28	
108	Multiple Pathways to Bacterial Load Reduction by Stormwater Best Management Practices: Trade-Offs in Performance, Volume, and Treated Area. <i>Environmental Science & Environmental Science & Environme</i>	10.3	26	
107	Using radium isotopes to characterize water ages and coastal mixing rates: A sensitivity analysis. <i>Limnology and Oceanography: Methods</i> , 2011 , 9, 380-395	2.6	26	
106	Water quality criteria for an acidifying ocean: Challenges and opportunities for improvement. <i>Ocean and Coastal Management</i> , 2016 , 126, 31-41	3.9	26	
105	Absolute Quantification of Enterococcal 23S rRNA Gene Using Digital PCR. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	25	
104	Human development is linked to multiple water body impairments along the California coast. <i>Estuaries and Coasts</i> , 2006 , 29, 860-870	2.8	25	
103	Wastewater-based estimation of the effective reproductive number of SARS-CoV-2		25	
102	Soil-Transmitted Helminth Eggs Are Present in Soil at Multiple Locations within Households in Rural Kenya. <i>PLoS ONE</i> , 2016 , 11, e0157780	3.7	25	
101	Escherichia coli Removal in Biochar-Modified Biofilters: Effects of Biofilm. <i>PLoS ONE</i> , 2016 , 11, e016748	3 .7	24	

100	Temporal stability of the microbial community in sewage-polluted seawater exposed to natural sunlight cycles and marine microbiota. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2107-16	4.8	22
99	A coupled modeling and molecular biology approach to microbial source tracking at Cowell Beach, Santa Cruz, CA, United States. <i>Environmental Science & Environmental Science </i>	10.3	22
98	Mechanisms of post-supply contamination of drinking water in Bagamoyo, Tanzania. <i>Journal of Water and Health</i> , 2013 , 11, 543-54	2.2	22
97	Fecal indicator bacteria and Salmonella in ponds managed as bird habitat, San Francisco Bay, California, USA. <i>Water Research</i> , 2008 , 42, 2921-30	12.5	22
96	A human fecal contamination score for ranking recreational sites using the HF183/BacR287 quantitative real-time PCR method. <i>Water Research</i> , 2018 , 128, 148-156	12.5	22
95	Coupled physical, chemical, and microbiological measurements suggest a connection between internal waves and surf zone water quality in the Southern California Bight. <i>Continental Shelf Research</i> , 2012 , 34, 64-78	2.4	21
94	Mobilization of Microspheres from a Fractured Soil during Intermittent Infiltration Events. <i>Vadose Zone Journal</i> , 2015 , 14, vzj2014.05.0058	2.7	21
93	Improvement of urban lake water quality by removal of Escherichia coli through the action of the bivalve Anodonta californiensis. <i>Environmental Science & Emp; Technology</i> , 2015 , 49, 1664-72	10.3	21
92	The Environmental Microbiology Minimum Information (EMMI) Guidelines: qPCR and dPCR Quality and Reporting for Environmental Microbiology. <i>Environmental Science & Environmental Science & Environment</i>	:10⊂102	22 ² 1
91	Biochar-augmented biofilters to improve pollutant removal from stormwater Lan they improve receiving water quality?. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 1520-1537	4.2	20
90	Frequent detection of a human fecal indicator in the urban ocean: environmental drivers and covariation with enterococci. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 480-492	4.3	20
89	Effective detection of human noroviruses in Hawaiian waters using enhanced RT-PCR methods. <i>Water Research</i> , 2011 , 45, 5837-48	12.5	20
88	Fecal indicator bacteria and virus removal in stormwater biofilters: Effects of biochar, media saturation, and field conditioning. <i>PLoS ONE</i> , 2019 , 14, e0222719	3.7	19
87	Efficacy of alcohol-based hand sanitizer on hands soiled with dirt and cooking oil. <i>Journal of Water and Health</i> , 2011 , 9, 429-33	2.2	19
86	Oceans in Peril: Grand Challenges in Applied Water Quality Research for the 21st Century. <i>Environmental Engineering Science</i> , 2017 , 34, 3-15	2	18
85	Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters. <i>Journal of Environmental Management</i> , 2014 , 136, 11	2 ⁷ 28	18
84	Ocean Acidification Science Needs for Natural Resource Managers of the North American West Coast. <i>Oceanography</i> , 2015 , 25, 170-181	2.3	18
83	SARS-CoV-2 Wastewater Surveillance for Public Health Action. <i>Emerging Infectious Diseases</i> , 2021 , 27, 1-8	10.2	18

(2014-2015)

82	Comparative decay of Catellicoccus marimmalium and enterococci in beach sand and seawater. <i>Water Research</i> , 2015 , 83, 377-84	12.5	17
81	Occurrence of Host-Associated Fecal Markers on Child Hands, Household Soil, and Drinking Water in Rural Bangladeshi Households. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 393-398	11	17
8o	Role of microbial cell properties on bacterial pathogen and coliphage removal in biochar-modified stormwater biofilters. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 2160-2169	4.2	17
79	Risk-Based Threshold of Gull-Associated Fecal Marker Concentrations for Recreational Water. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 44-48	11	16
78	Solar inactivation of four Salmonella serovars in fresh and marine waters. <i>Journal of Water and Health</i> , 2012 , 10, 504-10	2.2	16
77	Sewage loading and microbial risk in urban waters of the Great Lakes. <i>Elementa</i> , 2018 , 6,	3.6	16
76	Impacts of beach wrack removal via grooming on surf zone water quality. <i>Environmental Science & Environmental & Environmental</i>	10.3	15
75	Implementation of an automated beach water quality nowcast system at ten California oceanic beaches. <i>Journal of Environmental Management</i> , 2018 , 223, 633-643	7.9	15
74	Growth-dependent photoinactivation kinetics of Enterococcus faecalis. <i>Journal of Applied Microbiology</i> , 2015 , 118, 1226-37	4.7	14
73	Comparison of enterovirus and adenovirus concentration and enumeration methods in seawater from Southern California, USA and Baja Malibu, Mexico. <i>Journal of Water and Health</i> , 2012 , 10, 419-30	2.2	14
72	Exogenous indirect photoinactivation of bacterial pathogens and indicators in water with natural and synthetic photosensitizers in simulated sunlight with reduced UVB. <i>Journal of Applied Microbiology</i> , 2016 , 121, 587-97	4.7	13
71	Estimating the probability of illness due to swimming in recreational water with a mixture of human- and gull-associated microbial source tracking markers. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1528-1541	4.3	13
70	Covariation of coastal water temperature and microbial pollution at interannual to tidal periods. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	13
69	Sources and fate of Salmonella and fecal indicator bacteria in an urban creek. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 2206-12		12
68	Submarine Groundwater Discharge to a High-Energy Surf Zone at Stinson Beach, California, Estimated Using Radium Isotopes. <i>Estuaries and Coasts</i> , 2011 , 34, 256-268	2.8	12
67	Dissolved Inorganic Nitrogen, Soluble Reactive Phosphorous, and Microbial Pollutant Loading from Tropical Rural Watersheds in Hawail to the Coastal Ocean During Non-Storm Conditions. <i>Estuaries and Coasts</i> , 2011 , 34, 925-936	2.8	12
66	Standardized preservation, extraction and quantification techniques for detection of fecal SARS-CoV-2 RNA. <i>Nature Communications</i> , 2021 , 12, 5753	17.4	12
65	New Performance Metrics for Quantitative Polymerase Chain Reaction-Based Microbial Source Tracking Methods. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 20-25	11	11

64	Transcriptional response of Enterococcus faecalis to sunlight. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 130, 349-56	6.7	11
63	Contributions of Foot Traffic and Outdoor Concentrations to Indoor Airborne Aspergillus. <i>Aerosol Science and Technology</i> , 2011 , 45, 352-363	3.4	11
62	Escherichia coli Reduction by Bivalves in an Impaired River Impacted by Agricultural Land Use. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	11
61	Transfer of Enteric Viruses Adenovirus and Coxsackievirus and Bacteriophage MS2 from Liquid to Human Skin. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	11
60	Transport of Fecal Indicators from Beach Sand to the Surf Zone by Recirculating Seawater: Laboratory Experiments and Numerical Modeling. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	10
59	Bacterial Contamination and Submarine Groundwater Discharge—A Possible Link. <i>Environmental Chemistry</i> , 2004 , 1, 29	3.2	10
58	Nowcasting Recreational Water Quality179-210		10
57	Simple estimate of entrainment rate of pollutants from a coastal discharge into the surf zone. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	9
56	Enterococcus spp on fomites and hands indicate increased risk of respiratory illness in child care centers. <i>American Journal of Infection Control</i> , 2013 , 41, 728-33	3.8	9
55	Staphylococcus aureus Strain Newman Photoinactivation and Cellular Response to Sunlight Exposure. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	9
54	SARS-CoV-2 in wastewater settled solids is associated with COVID-19 cases in a large urban sewershed		9
53	Risk-based water quality thresholds for coliphages in surface waters: effect of temperature and contamination aging. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 2031-2041	4.3	9
52	Effect of storage conditions on SARS-CoV-2 RNA quantification in wastewater solids. <i>PeerJ</i> , 2021 , 9, e1	1933	9
51	Transfer Rate of Enveloped and Nonenveloped Viruses between Fingerpads and Surfaces. <i>Applied and Environmental Microbiology</i> , 2021 , 87, e0121521	4.8	9
50	High-Frequency, High-Throughput Quantification of SARS-CoV-2 RNA in Wastewater Settled Solids at Eight Publicly Owned Treatment Works in Northern California Shows Strong Association with COVID-19 Incidence. <i>MSystems</i> , 2021 , 6, e0082921	7.6	9
49	Microbial community structure of sea spray aerosols at three California beaches. <i>FEMS Microbiology Ecology</i> , 2018 , 94,	4.3	8
48	Modeling Fate and Transport of Fecal Bacteria in Surface Water165-188		8
47	CrAssphage for fecal source tracking in Chile: Covariation with norovirus, HF183, and bacterial indicators. <i>Water Research X</i> , 2020 , 9, 100071	8.1	8

(2020-2015)

46	Quantification of Human Norovirus GII on Hands of Mothers with Children Under the Age of Five Years in Bagamoyo, Tanzania. <i>American Journal of Tropical Medicine and Hygiene</i> , 2015 , 93, 478-84	3.2	7
45	Respiratory Syncytial Virus (RSV) RNA in Wastewater Settled Solids Reflects RSV Clinical Positivity Rates. <i>Environmental Science and Technology Letters</i> , 2022 , 9, 173-178	11	7
44	Fecal Contamination on Produce from Wholesale and Retail Food Markets in Dhaka, Bangladesh. <i>American Journal of Tropical Medicine and Hygiene</i> , 2018 , 98, 287-294	3.2	7
43	Comparison of analytical techniques to explain variability in stored drinking water quality and microbial hand contamination of female caregivers in Tanzania. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 893-903	4.3	6
42	A steady state model of particulate organic carbon flux below the mixed layer and application to the Joint Global Ocean Flux Study. <i>Journal of Geophysical Research</i> , 2001 , 106, 31227-31237		6
41	A Day at the Beach: Enabling Coastal Water Quality Prediction with High-Frequency Sampling and Data-Driven Models. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	6
40	Detection of SARS-CoV-2 Variants Mu, Beta, Gamma, Lambda, Delta, Alpha, and Omicron in Wastewater Settled Solids Using Mutation-Specific Assays Is Associated with Regional Detection of Variants in Clinical Samples <i>Applied and Environmental Microbiology</i> , 2022 , e0004522	4.8	6
39	Transcriptional Response of to Sunlight in Oxic and Anoxic Conditions. <i>Frontiers in Microbiology</i> , 2018 , 9, 249	5.7	5
38	High Throughput RNA Extraction and PCR Inhibitor Removal of Settled Solids for Wastewater Surveillance of SARS-CoV-2 RNA v1		5
37	Effect of storage conditions on SARS-CoV-2 RNA quantification in wastewater solids		5
36	Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. <i>Environmental Science: Water Research and Technology</i> , 2021 , 9,	4.2	5
35	Preventing Scientific and Ethical Misuse of Wastewater Surveillance Data. <i>Environmental Science & Environmental Science</i>	10.3	5
34	SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works <i>Environmental Science: Water Research and Technology</i> , 2022 , 8, 757-770	4.2	5
33	Ruminant Fecal Contamination of Drinking Water Introduced Post-Collection in Rural Kenyan Households. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	4
32	High Throughput pre-analytical processing of wastewater settled solids for SARS-CoV-2 RNA analyses v2		4
31	High Throughput RNA Extraction and PCR Inhibitor Removal of Settled Solids for Wastewater Surveillance of SARS-CoV-2 RNA v2		4
30	Systematic Review and Meta-Analysis of the Persistence of Enveloped Viruses in Environmental Waters and Wastewater in the Absence of Disinfectants. <i>Environmental Science & Environmental Envir</i>	10.3	4
29	Contamination Scenario Matters when Using Viral and Bacterial Human-Associated Genetic Markers as Indicators of a Health Risk in Untreated Sewage-Impacted Recreational Waters. <i>Environmental</i>	10.3	1

28	Transport of enterococci and F+ coliphage through the saturated zone of the beach aquifer. Journal of Water and Health, 2016 , 14, 26-38	2.2	3
27	Growth of Enterococci in Unaltered, Unseeded Beach Sands Subjected to Tidal Wetting. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 2997-2997	4.8	3
26	Extraction of RNA from Wastewater Primary Solids Using a Direct Extraction Method for Downstream SARS-CoV-2 RNA Quantification v1		3
25	One-Step RT-ddPCR for Detection of SARS-CoV-2, Bovine Coronavirus, and PMMoV RNA in RNA Derived from Wastewater or Primary Settled Solids 1v1		3
24	Estimating relative abundance of two SARS-CoV-2 variants through wastewater surveillance at two large metropolitan sites		3
23	SARS-CoV-2 RNA is enriched by orders of magnitude in solid relative to liquid wastewater at publicly owned treatment works		3
22	Viral pathogens in urban stormwater runoff: Occurrence and removal via vegetated biochar-amended biofilters. <i>Water Research</i> , 2021 , 207, 117829	12.5	3
21	What Environmental Factors Influence the Concentration of Fecal Indicator Bacteria in Groundwater? Insights from Explanatory Modeling in Uganda and Bangladesh. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	3
20	High Throughput SARS-COV-2, PMMOV, and BCoV quantification in settled solids using digital RT-PCR v1		3
19	Recreational Water Risk: Pathogens and Fecal Indicators 2013 , 441-459		3
18	Persistence of Endogenous SARS-CoV-2 and Pepper Mild Mottle Virus RNA in Wastewater-Settled Solids. <i>ACS ES&T Water</i> ,		3
17	Classical and Molecular Methods to Measure Fecal Bacteria241-273		2
16	Standardized preservation, extraction and quantification techniques for detection of fecal SARS-CoV-2 RNA		2
15	The Beach Aquifer Microbiome: Research Gaps and Data Needs. <i>Frontiers in Environmental Science</i> , 2021 , 9,	4.8	2
14	Sars-Cov-2 Wastewater Surveillance for Public Health Action: Connecting Perspectives From Wastewater Researchers and Public Health Officials During a Global Pandemic		2
13	Marine and Freshwater Fecal Indicators and Source Identification 2013 , 199-235		2
12	Participatory science for coastal water quality: freshwater plume mapping and volunteer retention in a randomized informational intervention. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 918-929	4.3	1
11	Application of molecular source tracking and mass balance approach to identify potential sources of fecal indicator bacteria in a tropical river. <i>PLoS ONE</i> , 2020 , 15, e0232054	3.7	1

LIST OF PUBLICATIONS

10	Detection of SARS-CoV-2 variant Mu, Beta, Gamma, Lambda, Delta, Alpha, and Omicron in wastewater settled solids using mutation-specific assays is associated with regional detection of variants in clinical samples		1
9	Modeling Untreated Wastewater Evolution and Swimmer Illness for Four Wastewater Infrastructure Scenarios in the San Diego-Tijuana (US/MX) Border Region. <i>GeoHealth</i> , 2021 , 5, e2021GI	ноδ0490	1
8	Sunlight Inactivation of Human Norovirus and Bacteriophage MS2 Using a Genome-Wide PCR-Based Approach and Enzyme Pretreatment. <i>Environmental Science & Environmental Science </i>	78 3 -8792	1
7	High frequency, high throughput quantification of SARS-CoV-2 RNA in wastewater settled solids at eight publicly owned treatment works in Northern California shows strong association with COVID-19 incidence		1
6	Highly variable removal of pathogens, antibiotic resistance genes, conventional fecal indicators and human-associated fecal source markers in a pilot-scale stormwater biofilter operated under realistic stormflow conditions <i>Water Research</i> , 2022 , 219, 118525	12.5	1
5	Quantitative PCR assays to detect whales, rockfish, and common murre environmental DNA in marine water samples of the Northeastern Pacific. <i>PLoS ONE</i> , 2020 , 15, e0242689	3.7	O
4	Photoinactivation of uncultured, indigenous enterococci. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 104-112	4.3	
3	A Coupled Modeling and Molecular Biology Approach to Microbial Source Tracking at a Marine Beach: A Case Study Investigating the Role of Fecal Indicator Bacteria from Wrack and Sand. <i>Proceedings of the Water Environment Federation</i> , 2014 , 2014, 4860-4888		
2	A scaling theory for number-flux distributions generated during steady-state coagulation and settling and application to particles in Lake Zurich, Switzerland. <i>Journal of Colloid and Interface Science</i> , 2002 , 254, 266-73	9.3	
1	Beaches and Coastal Environments 2011 , 451-483		